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Abstract

An important concern for many not-for-profits is their major gift fundraising.
Major gifts are large gifts (typically $10,000+) and donors who give these gifts
are called major donors. Depending upon the charity type, major gifts can
constitute as much as 80% of donation dollars received by a charity. Thus,
being able to predict who will give a major gift is crucial for charities. In
the for-profit sector, using machine learning to target customers has been a
long-standing strategy. Charities (i.e., not-for-profits) have been slower to im-
plement machine learning to aid with donor identification and retention. To
implement this, we used random forest classifier which predicted with high ac-
curacy (94.47%) and 31 prospects. We tried different experiments using deep
learning techniques, Adaboost, decision trees, extra trees classifiers, LASSO,
ElasticNet, XGBoost and Light Gradient Boosting regression in order to de-
velop models that can accurately predict future major donors who will donate
$10,000 or more. We also experimented with using only donation and be-
havioural data, which saw increase in false positive values than false negatives
for most of the charities. Furthermore, we forecast how much money major
donor constituents will contribute to the charity, in which Light GBM re-
gression model was performing well with lowest RMSE values and standard
deviations.
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Chapter 1

Introduction

Charities rely on major gifts for a significant portion of their budget. Univer-
sity foundations in particular receive about 80% of their donation dollars from
major gifts [14]. The threshold for a major gift varies by charity, but typically
ranges from $10,000 to $50,000. While these are typical minimum thresholds,
major gifts can be in the range of millions of dollars.

Major donors are donors who have either given a gift that meets the char-
ity’s major giving threshold or who have an official pledge to do so with the
charity. Since these donations can be 500x to 50000x larger than the average
donation to a charity, charities spend much more time with each potential
major donor than non-major donors in order to increase the likelihood of a
gift. Thus, having a precise list of likely major donors is critical for a char-
ity’s success. The aim of the research presented in this paper is to predict
potential major donors. Major donors are important because their gifts make
up a large chunk of the organisations overall fundraising revenue. It is crucial
to prioritize the relationships with them. Major donors are more inclined to
give to nonprofits that have a dedicated stewardship strategy to cultivate their
relationships [28].

Charities employ major gift officers (MGOs) strictly to seek out and ‘con-
vert’ major donor prospects. These MGOs can spend years developing a re-
lationship with potential major donors and thus the decision concerning with
whom to begin a relationship is an important one [14]. Typically, MGOs main-
tain a spreadsheet of prospects, hand-chosen based on wealth alone. Wealth
is not the only factor in an individual’s decision to make a major gift, and so
MGOs consider demographic, education, behavioural, and donation data [14].

MGOs are the organisation go-to people for all aspects of major giving.
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They can help nonprofits with major gift efforts such as identification, culti-
vation, solicitation, and stewardship [14].

1.1 Major Donors Strategies

In this section, we will discuss some of the most effective strategies used by
nonprofits for identifying major donors.

• Create a donor recognition wall: Donor recognition walls allow charities
to honor major donors in a permanent, meaningful way. By building a
lasting testament to the major donors, charities will be able to convey
the depth and longevity of their impact and appreciation [28].

• Perform a prospect screening: Prospect research is a research process
performed by a nonprofit’s fundraising and development teams to gather
more data about their donors and prospects to determine a donor’s abil-
ity and desire to donate to a specific cause [28].

• Look into planned giving potential: Planned gifts are donations that
are decided on in the present and then allocated to the nonprofit in
the future. This type of contribution is often made when donors leave
charitable donations as a part of their wills after they have passed away.
Historically, most planned gifts are of equal size to major gifts, sometimes
even larger. However, they are also less prevalent.

• Start a Major Donor Society: When charities request a major gift, they
are asking for a big commitment. Major donors need to be carefully
cultivated leading up to the solicitation and just as carefully stewarded
after the gift has been made. One way to do that is to create a branded
major donor society 1.

• Hiring a Major Gifts Officer (MGO): MGOs are permanent employees.
They are responsible for handling major donor prospect files, preparing
educational materials, collaborating with the marketing team to create
promotional materials, presenting major gift appeals to prospects, mak-
ing the major gift proposal, following up with major donors to maintain

1Major donor societies are groups set up by a non-profit to help cultivate and steward
donors, keep them loyal to the organization, and encourage them to give more (and larger)
gifts in the future.

2



the relationship and finally seeking to upgrade opportunities when ap-
propriate.

• Host events catered to Major Donor Acquisition: An event catered to
major donors gathers people capable of making a large gift together
so that they can learn more about the organization, the constituents
charities serve, and the kind of impact their gifts could have, all while
the fundraisers simultaneously become familiar with the prospects.

• Engage Major Donors as Volunteers: Volunteerism helps donors bond
with the organization. This is true for all small and mid-level donors as
well as major donors [28].

With machine learning (ML), nonprofits can identify individuals who are
more likely to engage and donate to their cause to support their mission [13].
Machine learning algorithms can quickly analyze data (such as donation, demo-
graphic, behavioural and educational datasets), making the learning process
much more efficient [10]. Humans have limited time and resources to pro-
cess and analyze huge data sets. Machine learning has the ability to extract
insights from these complex data sets in minutes.

3



1.2 Scope

This research develops machine learning models that predict major donors
across various charities, as well as estimates of how much money a major donor
constituent 2 will contribute to the charity. The exact dollar amount that is
considered a major gift varies from organization to organization. My research
will help the industry perform better in raising more money for charities.
Machine learning models facilitate the work of charities by predicting lists of
potential major donors for raising maximum donations. Due to their size,
major gifts can alter the “path of charity”. They are a substantial funding
for a nonprofit. One major-gift-size donation can be the difference between
meeting a fundraising goal or not.

1.3 Thesis Structure

This thesis consists of seven chapters. Chapter 1 includes the introduction
and structure of this thesis. Chapter 2 introduces the problem and its scope,
related research, along with the objectives. Domain knowledge on machine
learning (ML) and deep learning models, including supervised learning, long
short-term memory (LSTMs), bidirectional long short-term memory (BDL-
STMs), convolutional neural networks (CNNs), gated recurrent unit (GRUs),
recurrent neural networks (RNNs) are presented in Chapter 3. Chapter 4
presents the data sources, data preparation and the hardware and software
environment used in our experiments. Chapter 5 explains the theory behind
different approaches used for predictions. Chapter 6 presents the empirical
evaluation of the discussed approaches for predicting major donor prospects.
And Chapter 7 presents the conclusions of this research and suggests probable
future work.

2A constituent who donates $10,000 or more to a charity are considered as an major
donor constituent.
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Chapter 2

Problem Formulation

The business problem at hand is to generate a ranked list of constituents who
have never given a major gift as prospects, so that MGOs can focus their
time and effort on them. To do so, we solve the problem of determining
which machine learning algorithm can best learn to distinguish between major
donors and non-major donors and then use that algorithm to predict future
major donors.

We expected that the most valuable insight in the data would be to pre-
dict when a minor donor is likely to become a major donor. Then such per-
sons might be actively solicited for major donations. We will make use of
actual charitable data, including demographic, donation, educational, and be-
havioural data. This data will be fed into machine learning models in order
to predict who will become future major donors. Furthermore, we forecast
how much money major donor constituents will contribute to the charity. As
any donor who donates $10,000 is considered a major donor, but a donor who
donates $1,000,000 has much more impact than someone who donates $10,000,
and the fundraising team must focus more on such donors.

The aforementioned goal can be achieved by training machine learning
models using labelled data and predicting major donor prospects for a charity.
The model is trained on a balanced dataset. The unbalanced dataset includes
a greater number of non-major donors (people who have not made a major
donation) than major donors (people who have made a major donation) as
described in Table 4.2. If the unbalanced data is fed to a machine learning
model, it affects the performance metrics of the model as mentioned in Sec-
tion 4.2. So, to avoid that, we balance the data which has equal amount from
major donor and non-major donor while training and testing, which leads the
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ML models to perform better across several performance metrics (e.g., accu-
racy, precision and F1-score) in order to predict the major donors in the test
set.

2.1 Related Research

Many suggestions for fundraising emails can be found on the World Wide
Web [16]. As early as 1994, research was conducted on the automatic discovery
of major donors [26]. Lindahl and Winship used a logit model to demonstrate
that low past giving levels are generally associated with a lower likelihood
of making a major gift. While charities have been slow to adopt machine
learning, for-profit organisations have long used these methods [2, 8].

Most of the past research done predicting donor giving behavior makes
use of linear techniques. Connolly and Blanchette (1986) [30] used discrimi-
nant analysis, and Gerlinda Melchiori (1988) [29] used classification analysis
to predict donor behavior, both of which are types of linear regression. These
techniques are inappropriate when the object is to predict rare events (such
as giving over $10,000) or when the dependent variable has an upper or lower
bound and there are a large number of individuals at the bound (as with
giving, where there are numerous individuals with zero giving).

Fundraising has played a prominent role in the development history of
higher education in North America [46]. In 2017, research was conducted that
tackled the two major fundraising challenges of identifying potential donors
who can upgrade the number of their pledges and identifying new donors.
Personal attributes like age, wealth, marital status, and gender were considered
for the research. Gaussian naive Bayes, random forest, and support vector
machine algorithms were used and evaluated. The test results showed that
the models can successfully distinguish between donors and non-donors with
the best model achieving an F-Score of 60%. For a robust test, a ten-fold cross-
validation method was used for validation purposes. In the validation section,
the SVM performed the best in terms of F1-score, accuracy, and recall rate. In
contrast, different types of deep learning methods were employed and assessed
in this research. The test findings showed that the deep learning methods were
able to accurately find major donor prospects according to F1-score.

Brittingham and Pezzullo note that certain current characteristics of alumni
were found to be predictors for major gift giving in some studies, but not oth-
ers [6]. Income, age, number of degrees from the institution, emotional attach-
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ment to the school, participation in alumni events, and participation in and
donation to other voluntary and religious groups were found to be predictors.

Wesley and Christopher (1992) used logit analysis in 1992 to predict the
individuals who would give higher (e.g., $100,000) or lower ($1,000) donations
based on the data from the alumni database as well as the geo-demographic
information [45]. Their result showed that 92% of the dollars could be collected
with 36.5% prospects selected in the annual fund model. Later with their
upgraded model (1994) [26], a slightly better performance was achieved for
major gift prediction. In this research, the test results using deep learning
models showed accurate results when using large data sets for certain charities,
compared to logistic regression model as described in empirical studies.

In the United States, charitable giving was $307 billion in 2008 (Giving
USA Foundation, 2008) [3]. Gifts from individuals are always the largest
source of nonprofit gifts and usually represent about 80% of all annual giving
to the estimated 1.4 million U.S. nonprofits. Major gifts are called “transfor-
mative” in the charitable world and comprise only a very small percentage of
household giving but are often critically important to a nonprofit’s growth and
success [22].

Machine learning models like artificial neural networks (ANNs) and ran-
dom forests (RFs) have been utilized to predict donor interactions with a large
charity [12], such as, “can we predict when a minor donor is likely to become a
major donor for targeted donation requests?”. This is comparable to our work,
in which we use demographic, donation, educational, and behavioural data to
train models such as Adaboost, decision trees, random forest classifiers, ex-
tra trees classifiers, LSTMGRUs, SimpleRNNs, GRUs, BDLSTM-GRU-TDLs
and BDLSTMCNNs to predict whether or not constituents will make a ma-
jor donation to support a specific cause. We also experiment using only the
donation and behavioural data and removing demographic, and educational
data to see how well the model predicts. Further, we built a regression model
that predicts how much money major donor constituents will contribute to the
charity.
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Chapter 3

Background Studies

This chapter provides the basic concepts of Artificial Intelligence (AI), Machine
Learning (ML) and Deep Learning along with the setup of our empirical work.

3.1 Artificial Intelligence

Artificial intelligence (AI) is a field which combines computer science and
robust datasets, to enable problem-solving. It has as sub-fields of machine
learning and deep learning. These disciplines are comprised of AI algorithms
which seek to create expert systems which make predictions or classifications
based on input data.

3.2 Machine Learning

Machine learning (ML) is the study of statistical theory and mathematical al-
gorithms that computers use to optimize performance relying on example data
or past experiences. Machine learning algorithms build a model to make pre-
dictions using training data rather than using explicit instructions. Machine
learning provides solutions to many problems in image recognition, speech
recognition, medical diagnosis and donor predictions. Machine learning is cat-
egorized as supervised learning, unsupervised learning, semi-supervised learn-
ing and reinforcement learning.
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• Supervised learning

Supervised learning algorithms know the target outputs of inputs in the
training data and try to model the relationships between target outputs
and input features. Learning algorithms produce a function to predict
output values for any new inputs after learning from sufficient labeled
data sets. Learning algorithms can also compare predicted values with
target output values and use the errors to improve performance.

Supervised learning can be split into two subcategories: classification
and regression.

– Classification uses an algorithm to accurately assign test data into
specific categories. It recognizes specific entities within the dataset
and attempts to draw some conclusions on how those entities should
be labeled or defined. Common classification algorithms are linear
classifiers, support vector machines, decision trees, k-nearest neigh-
bor, and random forest.

– Regression is used to understand the relationship between depen-
dent and independent variables. The output variable must be of
continuous nature or real value. Linear regression, logistical regres-
sion, and polynomial regression are popular regression algorithms.

• Unsupervised Learning

For unsupervised learning, the model is trained with unlabeled data sets.
The system may not figure out the correct output values for any inputs.
However, it can try to determine the hidden patterns and rules from
input data, summarize and group data points, which gives us meaningful
data information. Unsupervised learning models are utilized for three
main tasks: clustering, association, and dimensionality reduction.

• Semi-supervised learning

Semi-supervised learning is between supervised learning and unsuper-
vised learning. Algorithms use both labeled data and unlabeled data in
the training process. Semi-supervised learning is the best choice when
there is limited training data.

• Reinforcement Learning
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Reinforcement learning algorithms interact with the environment by tak-
ing actions and acquiring reward feedback. The goal of reinforcement
learning is to find a suitable action model that would maximize the total
cumulative reward of the agent.

We compared various machine learning and deep learning techniques and
evaluated the mean accuracy for each of them by a Stratified K-fold cross-
validation to prevent overfitting. In this basic approach, K-fold CV, the train-
ing set is split into k smaller sets :

• The model is trained using the k-1 folds as training data.

• It uses the last fold to compute the model performance.

3.2.1 Gaussian Naive Bayes

Naive Bayes classifiers are a group of supervised machine learning classification
algorithms based on the Bayes theorem. It is a simple classification technique,
but has high functionality [27]. Complex classification problems can also be
implemented by using Naive Bayes Classifier.

When working with continuous data, an assumption often taken is that
the continuous values associated with each class are distributed according to
a normal (or Gaussian) distribution. The likelihood of the features is assumed
to be:

P (xi | y) =
1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)
(3.1)

Sometimes assume variance is independent of Y (i.e., σi), or independent
of Xi (i.e., σk) or both (i.e., σ(z))

Gaussian Naive Bayes supports continuous valued features and models each
as conforming to a Gaussian (normal) distribution. An approach to create a
simple model is to assume that the data is described by a Gaussian distribu-
tion with no co-variance (independent dimensions) between dimensions. This
model can be fit by simply finding the mean and standard deviation of the
points within each label, which is all what is needed to define such a distribu-
tion.
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Figure 3.1: Illustration of how a Gaussian Naive Bayes classifier works[27]

3.2.2 Decision Trees

A decision tree is the powerful statistical tool for classification, prediction, in-
terpretation, and data manipulation. Decision trees consists of three different
elements:

• Root node: The top level node represents the objective the model.

• Branches: They are the stem from the root represent different options or
courses of action that are available when making a particular decision.
They are indicated with an arrow line and include associated costs, as
well as the likelihood to occur.

• Leaf node: The leaf nodes which are attached at the end of the branches
represent possible outcomes for each action. There are two types of leaf
nodes: square leaf nodes, which indicate another decision to be made,
and circle leaf nodes, which indicate a chance event or unknown outcome.
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Figure 3.2: Elements in a decision tree[21]

Decision trees are fundamentally recursive, the algorithm learns through
repetition [21]. The algorithms attempts different splits and determines the
split that achieves the correct classification as many times as possible. The
root node is selected based on the attribute selection measure (ASM) and is
repeated until there is a leaf node (cannot split anymore).

ASM is a technique used in data mining processes for data reduction. The
two main ASM techniques are Gini Index and Information Gain (ID3).
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Figure 3.3: Illustration of how a Decision tree model works[21]

The ID3 algorithm builds decision trees using a top-down greedy search
approach through the space of possible branches with no backtracking. The
steps in ID3 algorithm are as follows:

• It begins with the original set S as the root node.

• On each iteration of the algorithm, it iterates through the very unused
attribute of the set S and calculates Entropy(H) and Information Gain
(IG) of this attribute.

• It then selects the attribute which has the smallest entropy or largest
information gain.

• The set S is then split by the selected attribute to produce a subset of
the data.

• The algorithm continues to recur on each subset, considering only at-
tributes never selected before.

3.2.3 Adaboost Classifier

Adaboost or Adaptive Boosting is one of ensemble boosting classifier proposed
by Yoav Freund and Robert Schapire in 1996 [32]. It is a meta-estimator that
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begins by fitting a classifier on the original dataset and then fits additional
copies of the classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus more on
difficult cases. The basic concept behind Adaboost is to set the weights of
classifiers and training the data sample in each iteration such that it ensures the
accurate predictions of unusual observations. Any machine learning algorithm
can be used as a base classifier if it accepts weights on individual training
examples. Adaboost should meet two conditions:

• The classifier should be trained interactively on various weighed training
examples.

• In each iteration, it tries to provide an excellent fit for these examples
by minimizing training error.

It works in the following steps:

• Initially, all observations are given equal weights.

• A model is built on a subset of data.

• Using this model, predictions are made on the whole dataset.

• Errors are calculated by comparing the predictions and actual values.

• While creating the next model, higher weights are given to the data
points which were predicted incorrectly.

• Weights can be determined using the error value. For instance, the higher
the error the more is the weight assigned to the observation.

• This process is repeated until the error function does not change, or the
maximum limit of the number of estimators is reached.

The “strength” of the “weak” learners: In this research, we use simple
weak learners, such as decision stumps (1-level decision trees), to overcome
the problem of overfitting in Adaboost algorithms.
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Figure 3.4: Adaboost Model[32]

3.2.4 Random Forest Classifier

A random forest is a collection of decision trees whose results are aggregated
into one final result. They limit overfitting without substantially increasing
error due to bias. It is also one of the most used algorithms, because of its
simplicity and diversity (it can be used for both classification and regression
tasks).

A random forest has nearly the same hyperparameters as a decision tree
or a bagging classifier. With random forest, we can also deal with regression
tasks by using the algorithm’s regressor. Random forest adds additional ran-
domness to the model, while growing the trees. Instead of searching for the
most important feature while splitting a node, it searches for the best feature
among a random subset of features. We can also make trees more random by
additionally using random thresholds for each feature rather than searching
for the best possible thresholds (like a normal decision tree does).

The hyperparameters in random forest are either used to increase the pre-
dictive power of the model or to make the model faster. The hyperparameters
of sklearns1 built-in random forest function:

1sklearn is an indispensable part of the python machine learning toolkit. It is widely
used across classification, predictive analytics, and many other machine learning tasks.
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• Increasing the predictive power: n estimators hyperparameter, which is
the number of trees the algorithm builds before taking the maximum vot-
ing or taking the averages of predictions. In general, a higher number of
trees increases the performance and makes the predictions more stable,
but it also slows down the computation. Another important hyperpa-
rameter is max features, which is the maximum number of features
random forest considers to split a node. The last important hyperpa-
rameter is min sample leaf , which determines the minimum number of
leaves required to split an internal node.

• Increasing the model’s speed: The n jobs hyperparameter tells the en-
gine how many processors it is allowed to use. If it has a value of one, it
can only use one processor. A value of “-1” means that there is no limit.
The random state hyperparameter makes the model’s output replicable.
The model will always produce the same results when it has a definite
value of random state and if it has been given the same hyperparameters
and the same training data. Lastly, there is the oob score (also called
oob sampling), which is a random forest cross-validation method. In this
sampling, about one-third of the data is not used to train the model and
can be used to evaluate its performance. These samples are called the
out-of-bag samples.

3.2.5 Extra Trees Classifier

An extra trees classifier also known as extremely randomized trees is an ensem-
ble machine learning algorithm that combines predictions from many decision
trees. It is related to random forests. It uses a simpler algorithm to construct
the decision trees than random forests do to use as members of the ensemble.
Each decision stump will be built with the following criteria:

• All the data available in the training set is used to built each stump.

• To form the root node or any node, the best split is determined by search-
ing in a subset of randomly selected features of size square root(number
of features). The split of each selected feature is chosen at random.

• The maximum depth of the decision stump is one.
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3.3 Artificial Neural Networks

ANNs are one of the most commonly used ML techniques. They are built
based on inspiration from biological neural systems which have many small
computing nodes, neurons, that are interconnected [41]. In a similar fash-
ion, ANNs are made up of simple nodes or neurons connected by weights w
(Figure 3.5).

An activation function θ determines the output y by computing the sum
of the products of the weights wij and its input node values. A threshold or
bias θj , is used to restrict the activation of a neuron, as shown in Figure 3.5.
The output y of a neutron should be equal the target value t.

oj = φ(θj +
∑
i

xiwi) (3.2)

If it does not, the weights are adjusted as

wij = wij +∆wij (3.3)

∆wij = ηδjxi (3.4)

where wij is the value of the connection weight from the unit in layer i to
the unit in layer j, xi is the value of input from the unit in layer i to the unit
in layer j, η is the learning rate, ∆wij is the value of the weight update for
the connection weight from the unit layer i to the unit in layer j, δj is the
derivative of error at the unit j with respect to weight wij .
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Figure 3.5: The structure of the artificial neuron [18]

3.3.1 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP), is a non-linear function developed by using
multiple layers of neurons in an ANN model. In an MLP network, the output
of a neuron in the first layer is used as the input for the next layer (Figure 3.6).

MLP does not allow interconnections within a layer or to previous layers,
so it is an acyclic feed-forward graph. The layer between the input layer and
the output layer is called the hidden layer. As the number of hidden nodes
and the number of hidden layers are increased, the MLP is capable of mod-
elling increasingly complex hypothesis spaces. However, with each additional
layer it becomes increasingly challenging to adjust the lower weights of the
network [24].
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Figure 3.6: An architecture of Multi-layer perceptron (MLP) model [42]

3.4 Back-Propagation

Back-Propagation (BP) is a supervised algorithm that solves the challenge
of updating weights in an MLP model. BP is one of the most important
ANN learning algorithms. It aims to find the global minimum on an error
surface to network node weights. In BP, weights are modified proportional
to their contribution by using a gradient descent (GD) technique to minimize
the error. The GD technique reduces the sum of squared error (SSE) over all
given examples:

SSE =
1

2

n∑
k=1

(tk − yk)
2 (3.5)

where the output is the set of output nodes, and tk and yk are the given
target values from the example and the output of the network for that target
value, respectively [44]. The BP algorithm starts at the output layer and
propagates the error through each node to the next lower layer and so on until
reaching the input layer. The weights between the hidden and output layers
are modified prior to modifying the weights between the input and hidden
layers. The BP algorithm may get stuck in a local minimum as the weights
are updated. To moderate this, the BP tunes parameters like the learning rate
η and momentum α. The actual output of hidden neuron j for input signal i
is given by:

hj = f [
∑
i

xiwij + θj] (3.6)
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where xi is the input signal of the input neuron i, wij is the synaptic weight
between the input neuron i and the hidden neuron j, θj is the bias of the hidden
node j, and f is the activation function. Equation 3.6 shows the formula for
the ith weight, which relies on a continuous non-linear activation function for
communication between layers [44].

∆wij = −η
δE

δwij

(3.7)

where ∆wij is value of the weight update for the connection weight from
the unit in layer i to the unit in layer j, η is the learning rate, and δ is the
derivative of error at unit j with respect to weight wij and error E. The formula
to update the weight wij between nodes j and i for the current iteration n is:

∆wij(t) = ηδjxi + α∆wij(t− 1) (3.8)

where ∆wij(t− 1) is the weight update of the previous iteration, δj is the
derivative of the error at node j with respect to the weight wij, and xi is the
input over the connection associated with wij. The learning rate η controls the
amount of weight update. A larger learning rate means a larger weight update
while a smaller learning rate has smaller weight updates [44]. To understand
the impact of momentum α, consider a ball in the physical world. When a
ball rolls down a steep grade it will have a high momentum. This enables the
ball to move through small dips in the ground’s surface and carry on moving
downhill. In a similar manner, momentum α in Equation 3.8 increases with the
magnitude of the prior weight update and this prevents the BP from getting
stuck in shallow local minima.

3.4.1 Overfitting and Underfitting models

Overfitting is possible in every machine learning problem [37]. A fundamental
issue in machine learning is the tension between optimization and generaliza-
tion. Optimization refers to the process of adjusting a model in such a way
that the performance on the training data (the learning in machine learning)
can be improved. Generalization refers to how well the trained model performs
on data it has never seen (test data) [37].

At the beginning of training, optimization and generalization are corre-
lated: the lower the loss on training data, the lower the loss on test data. This
is when the model is said to be underfit and the network has not yet modeled
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all relevant patterns in the training data. After a certain number of iterations
on the training data, generalization stops improving and validation set 2 met-
rics begin to degrade. This means that the model is starting to overfit and
starting to learn patterns that are explicit to the training data but that are
misleading or irrelevant with regards to new data [37].

3.4.2 Preventing Overfitting

To keep a model from learning misleading or irrelevant patterns found in the
training data, the best solution is to obtain additional training data. A model
trained on more data will normally generalize better. If that is not possible,
the next best solution is to adjust the quantity of data the models allowed
to store. When a network can only afford to memorize a small number of
patterns, the optimization process will force it to focus on the most prominent
patterns that have better possibility of generalizing well. This process of bat-
tling overfitting is called regularization. One of the regularization technique
used in this research were adding dropout layers.

Reducing the network’s size

The most straightforward approach to prevent overfitting is to diminish the
size of the model: the number of learnable parameters in the model (which is
determined by the number of layers and the number of units per layer). In deep
learning, the number of learnable parameters in a model is frequently referred
to as the model’s capacity [43]. Intuitively, a model with more parameters has
a larger memorization limit and therefore can easily learn a perfect dictionary
like mapping between training samples and their targets - a mapping with no
generalization power.

Deep learning models in general are good at fitting the training data, yet
the real test is generalization to an independent test set, not fitting. Bigger
networks start overfitting almost immediately after just one epoch, and overfit
more severely. Their validation loss is also noisier as the model is not properly
regularized. A few possible reasons for the noisy validation loss are:

• Insufficient number of training samples.

2The fraction of training data used to evaluate loss.
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• Large learning rates which leads stochastic gradient descent (SGD) to
jump over the local minima. This would be an extreme case of “under-
fitting”.

The possible solutions to reduce noise on validation loss are:

• Obtain more data.

• Alter the hyper-parameters.

• Implement weight regularization methods.

Adding weight regularization

A common method to mitigate overfitting is to put constraints on the com-
plexity of a network by forcing its weights to accept only small values that
make the distribution of weights more regular. This is called weight regular-
ization [43]. This way we try to limit its flexibility, but also encourage it
to build solutions based on multiple features. Two popular versions of this
method are: L1 - Least Absolute Deviations (LAD) and L2 - Least Square
Errors (LS).

• L1 regularization: A regression model that uses L1 regularization is
called Lasso 3 Regression. The cost added is proportional to the ab-
solute value of the weight coefficients (the L1 norm of the weights).

• L2 regularization: The model which uses the L2 regularization technique
is called Ridge Regression. The cost added is proportional to the square
of the value of the weight coefficients (the L2 norm of the weights). It is
also called weight decay.

Adding dropout

Dropout is one of the most utilized regularization techniques for neural net-
works used in this research. Dropout applied to a layer means to arbitrarily
drop out (set to zero) a number of output features of the layer during training.
The dropout rate is the fraction of the features that are zeroed out and usually
set between 0.2 and 0.5. While testing, no units are dropped out, instead, the
layer’s output values are scaled down by a factor equal to the dropout rate, to
balance for the fact that more units are active than at training time.

3Least Absolute Shrinkage and Selection Operator
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3.4.3 Activation function

An activation function is used to determine the output of neural network like
yes or no. It maps the resulting values in between 0 to 1 or -1 to 1 etc. The
activation functions can be divided into 2 types:

• Linear activation function: The linear activation is a simple unit
which transforms the input as “y=w.x + b”. These units have a linear
behavior and the output will not be confined between any range (-infinity
to infinity) [40].

• Non-linear activation function: The non-linear activation functions
makes it easier for the neural networks to generalize with variety of
data and differentiate between the output [40]. Some of the non-linear
activation functions are:

1. Rectified Linear Unit (ReLU)

2. Sigmoid or Logistic Activation Function

3. Tanh or hyperbolic tangent Activation Function

Sigmoid or Logistic activation function

Sigmoid function values range between 0 to 1. Therefore, it is used for models
to predict the probability as an output. The function is differentiable 4. The
function is monotonic but function’s derivative is not. The softmax function
is a more generalized logistic activation function which is used for multiclass
classification [40].

4we can find the slope of the sigmoid curve at any two points.
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Figure 3.7: Sigmoid activation function [40]

Tanh or hyperbolic tangent activation function

The range of the tanh function is from -1 to 1. tanh is also sigmoidal (s -
shaped). The advantage is that the negative inputs will be mapped strongly
negative and the zero inputs will be mapped near zero in the tanh graph. The
function is differentiable. The function is monotonic while its derivative is
not monotonic. The tanh function is mainly used classification between two
classes [40].

Figure 3.8: Tanh activation function [40]

ReLU (Rectified Linear Unit) activation function

The ReLU is the most used activation function in almost all the convolutional
neural networks or deep learning [40]. The function and its derivative both
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are monotonic 5. ReLUs are half rectified (from bottom) as seen in Figure 3.9,
the range is between “0” and “infinity”. ReLU solves the vanishing gradient
problem. If the input value is positive, the ReLU function returns it, if it is
negative, it returns 0. The ReLU’s derivative is 1 for values larger than zero.
Because multiplying 1 by itself several times still gives 1, this addresses the
vanishing gradient problem.

The ReLU function can be represented using the following equation:

y(x) = max(0, x) (3.9)

In the above equation, “x” is the input tensor or variable and is not differ-
entiable at x=0.

Figure 3.9: The rectified linear unit (ReLU) activation function [40]

3.4.4 Batch Normalization

Training deep neural networks with multiple layers can be challenging as they
can be sensitive to the initial random weights and configuration of the learn-
ing algorithm. Batch normalization is a technique designed to standardize
the inputs to a layer in a deep neural network. When implemented, batch
normalization has the effect of accelerating the training process and in some
cases improving the performance of the neural network. Sometimes, this layer
reduces the number of training epochs required to train deep neural networks.

A batch normalization layer can be used at most points in a model and
with most types of neural networks. This layer can be added to the model to

5A function which is either entirely increasing or decreasing.
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standardize raw input variables or the outputs of a hidden layer, but cannot
be used as an alternative for data preparation.

3.5 Deep Learning

Deep Learning (DL) is an area of ANN research where algorithms are devel-
oped that can learn representations of the input comprised of many hidden
layers of neurons [20]. Each layer represents a certain level of abstraction,
with each layer being more abstract than the layer below it.

Deep neural networks consist of multiple layers of interconnected nodes,
each building upon the previous layer to refine and optimize the prediction or
categorization. This progression of computations through the network is called
forward propagation. The input and output layers of a deep neural network
are called visible layers. The input layer is where the deep learning model
ingests the data for processing, and the output layer is where the final pre-
diction or classification is made. Another process called backpropagation uses
algorithms, like gradient descent, to calculate errors in predictions and then
adjusts the weights and biases of the function by moving backwards through
the layers in an effort to train the model. Together, forward propagation and
backpropagation allow a neural network to make predictions and correct for
any errors accordingly.

Deep learning distinguishes itself from classical machine learning by the
type of data that it works with and the methods in which it learns [11]. Ma-
chine learning algorithms leverage structured, labeled data to make predic-
tions. Deep learning eliminates some of data pre-processing that is involved
with machine learning. These algorithms can ingest and process unstructured
data, like text and images, and it automates feature extraction.

3.5.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized type of neural network
model designed for working with two-dimensional image data, although they
can be used with one-dimensional and three-dimensional data.
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Figure 3.10: Convolutional neural networks[38]

Basics of Convolutional Neural Network

CNNs have the same functionality irrespective of their dimensionality. The
only difference is the structure of the input data and how the filter, also known
as convolutional kernel or feature detector, moves across the data. Each layer
of CNNs (Figure 3.10) conduct different tasks.

• Convolutional layer

It has two key parameters. One is the kernel size, and the other is the
number of filters. The layer first divides the input into fixed-size patches
that are the same size in all filters. A layer contains many filters with
varying weight values, allowing each filter to learn as many features as
possible. The network also applies an activation function. Since the
network itself extracts features from the input, the layer outputs a series
of feature maps which enter the next layer.

• Pooling layer

It reduces the size of a feature map. Once the feature maps from previous
convolutional layer enter a pooling layer, the network divides the input
feature map into a fixed number of regions (determined by the pool
size) and summarises the value in each region into a single maximum
or average value. This is called max-pooling or average-pooling which
can reduce model complexity and prevent overfitting while allowing some
loss of information.
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• Dense layer

It is also known as fully connected layer and is the last part of the net-
work. Following completion of all convolutional-pooling computations,
the network arranges the values of final feature maps in a row. The final
dense layer outputs the absolute error for regression using relu method.

Understanding Conv1D parameters

A 1-Dimensional convolutional layer (Conv1D) creates a kernel that passes
over a single spatial (temporal) dimension to produce a tensor of outputs.
The parameters in Conv1D layers are:

• filters: Integer, the dimensionality of the output space (i.e. the number
of output filters in the convolution).

• kernel-size: An integer or tuple/list of a single integer, specifying the
length of the 1D convolution window.

• activation function: It determines the output of a deep learning model,
its accuracy and computational efficiency of training a model.

• kernel-initializer: A function applied to the kernel weights matrix. Used
mainly to initialize all values prior to training [47].

3.5.2 Recurrent Neural Networks

Standard neural networks such as feed forward neural networks do not have
memory to store what they learn. For every iteration, the network starts fresh
as it does not remember the data in the previous iteration while processing
the current set of data, which is a disadvantage when identifying correlations
and data patterns. This is where recurrent neural networks (RNNs) come
into picture. RNNs have a unique architecture that enables data to persist
and models short term dependencies. So, RNN are neural networks that are
designed for the effective handling of sequential data but are also useful for
non-sequential data [39].

RNN Architecture

The input of an RNN must be three dimensional in the following format :
batch size, the number of steps and the number of features. The number of

29



steps depicts the number of time-steps/segments we feed in one line of input
in the entire batch of data to RNN. The RNN unit in tensorflow is called an
“RNN cell”. The RNN cell refers to the whole layer (not just a single cell) as
the connections are recurrent and thus follow the “feeding to itself” approach.
The RNN layer is comprised of single rolled layer that unrolls according to
“number of steps” provided.

Tensorflow is the primary open source software library for dataflow and
differentiable programming across a range of tasks. We use mainly for: clas-
sification, perception, understanding, discovering, prediction and creation of
the models.

As mentioned earlier, RNNs have the special ability to model short term
dependencies due to their hidden state. They retain information from one time
step to another flowing through the unrolled RNN units. Each unrolled RNN
unit has a hidden state. The current time step’s hidden state is calculated using
information from the previous time step’s hidden state and current input. This
helps in retaining information on what the model saw in the previous time step
when processing the current time step’s information. Also, all the connections
in RNN have weights and biases (optional in some architectures).

When first feeding the data into RNN, it will have a rolled architecture as
shown in Figure 3.11:

Figure 3.11: RNN:A Simple Architecture[17]

When the RNN starts to process the data, it will unroll and produce out-
puts as shown in Figure 3.12:
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Figure 3.12: RNN:Unfolded Architecture with single hidden layer[7]

Vanishing Gradient Problem

Training neural networks involves the addition of many layers as this increases
the capacity of network [15]. But a problem with training networks with many
layers (e.g. deep neural networks) is that the gradient diminishes as it prop-
agates backward through the network. The error might have very little effect
on the model as it is so small and this problem is refered to as the “vanishing
gradient” problem. Sometimes, this error can be unstable and also explode,
where the gradient exponentially increases as it propagates backward through
the network. This is referred to as the “exploding gradient” problem [15].

Vanishing gradients are particularly common in RNNs as the update of the
network involves unrolling the network for each time step (Figure 3.12). Train-
ing continuously does not improve the performance of the ML models [15].

To overcome the vanishing gradient problem, several methods have been
proposed. Some of them are:

• Using Long Short-Term Memory networks(LSTMs) [35].

• Using activation functions such as a rectified linear unit (ReLU), as this
function allows more gradient to flow backward through the model during
training which improves performance of the model.

3.5.3 Gated Recurrent Unit

Gated Recurrent Unit is a type of Recurrent Neural Network that addresses the
issue of long term dependencies which can lead to vanishing gradients larger
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vanilla RNN networks experience. To solve the vanishing gradient problem of
a standard RNN, GRU uses update gate and reset gate. These are two vectors
which decide what information should be passed to the output. GRUs address
this issue by storing “memory” from the previous time point to help inform
the network for future predictions [23].

Figure 3.13: Gated Recurrent Unit[36]

Update gate

Update gate calculates zt for time step t using the formula:

zt = σ(W (z)xt + U (z)h(t−1)) (3.10)

When xt is plugged into the network unit, it is multiplied by its own weight
W (z). h(t−1) which holds the information for the previous t − 1 units and is
multiplied by its own weight U (z). Both results are added together and a
sigmoid activation function is applied to squash the result between 0 and 1.

The update gate helps the model to determine how much of the past in-
formation (from previous time steps) needs to be passed along to the future.
This is important because the model can decide to copy all the information
from the past and eliminate the risk of vanishing gradient problem.
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Reset gate

This gate is used from the model to decide how much of the past information
to forget. To calculate it, we use:

rt = σ(W (r)xt + U (r)h(t−1)) (3.11)

We plug in h(t−1) and xt, multiply them with their corresponding weights,
sum the results and apply the sigmoid function.

Current memory content

A new memory content which will use the reset gate to store the relevant
information from the past. It is calculated as follows:

h̃t = tanh(Wxt + rt
⊙

Uh(t−1)) (3.12)

1. Multiply the input xt with a weight W and h(t−1) with a weight U .

2. Calculate the Hadamard (element-wise) product between the reset gate
rt and Uh(t−1).

3. Sum up the results of step 1 and 2.

4. Apply the nonlinear activation function tanh.

Final memory at current time step

1. Apply element-wise multiplication to the update gate zt and h(t−1).

2. Apply element-wise multiplication to (1− zt) and h̃t.

3. Sum the results from step 1 and 2.

ht = zt
⊙

h(t−1) + (1− zt) ∗ h̃t (3.13)
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3.5.4 Long Short-Term Memory Networks

Long Short-Term Memory networks (LSTMs) is a type of RNNs, which are
capable of learning long-term dependencies and they work effectively on a large
variety of problems. LSTMs remember information for a long period of time
and are designed explicitly to solve long-term problems. LSTMs have similar
structure though the internals have different components when compared to
a single tanh (activation) layer in RNN. The four layers in the architecture
interact with each other.

The cell state C allows information to flow through the entire LSTM un-
changed, which enables the LSTM to remember context for a long period of
time (See Figure 3.14). The horizontal line has several inputs and outputs
which is controlled by gates that allows information to be added to or re-
moved from the cell state. The sigmoid layers output numbers between 0
and 1, describing how much should be let through from each component. An
LSTM has three of these gates to control the cell state.

Figure 3.14: Long Short-term Memory[5]

Forget Gate

This gate decides what information should be thrown away or kept. Informa-
tion from the previous hidden state and information from the current input is
passed through the sigmoid function. This gate return a value between 0 and
1. The closer to 0 means to forget, and the closer to 1 means to keep. The
forget state equation is:

ft = σ(Wxfx
(t) +Whfh

(t−1) + bf ) (3.14)
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Input Gate

To update the cell state, we have the input gate (it). We pass the previous
hidden state and current input into a sigmoid function. This decides which
values will be updated by transforming the values to be between 0 and 1: 0
means not important, and 1 means important. The hidden state and current
input are also into the tanh function to squish values between -1 and 1 to help
regulate the network. The tanh output is then multiplied with the sigmoid
output. The sigmoid output will decide which information is important to
keep from the tanh output. The input state equation is:

it = σ(Wxix
(t) +Whih

(t−1) + bi) (3.15)

Output Gate

The output (ot) gate decides what the next hidden state (contains information
on previous inputs) should be. First the previous hidden state and the current
input are passed into a sigmoid function and then the modified cell state is
passed to the tanh function. The tanh output is multiplied with the sigmoid
output to get the required output (information a hidden state should carry).
The output state equation is:

ot = σ(Wxox
(t) +Whoh

(t−1) + bo) (3.16)

3.5.5 Bi-directional Long Short-TermMemory Networks

A Bi-directional LSTM, or BDLSTM, is a sequence processing model that
consists of two LSTMs: one taking the input in a forward direction, and the
other in a backwards direction. BDLSTMs effectively increase the amount of
information available to the network, improving the context available to the
algorithm.

BDLSTM adds one more LSTM layer, which reverses the direction of infor-
mation flow. It means that the input sequence flows backward in the additional
LSTM layer. Then it combines the outputs from both LSTM layers in several
ways, such as average, sum, multiplication, or concatenation.
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Figure 3.15: Bi-directional long short-term memory[1]

3.6 Regression Analysis

Regression analysis is the process of estimating the relationship between a
dependent variable and independent variables. Regression analysis is one of
the most basic tools in the area of machine learning used for prediction. Using
regression we can fit a function to the available or training data and try to
predict the outcome for the future or hold-out data points. Regression serves
two purposes.

• To estimate missing data within the training data range (Interpolation)

• To estimate future data outside the training data range (Extrapolation)

3.6.1 Logistic Regression

Logistic regression is a process of modeling the probability of a discrete out-
come given an input variable. The most common logistic regression models is
a binary outcome; something that can take two values such as true/false or
yes/no.

Logistic regression is a simple and efficient method for binary and linear
classification problems, which achieve very good performance with linearly
separable classes. It is an extensively employed algorithm for classification in
industry. The logistic regression model, like the Adaline and perceptron can
be generalized to multiclass classification. Scikit-learn has a highly optimized
version of logistic regression which supports multiclass classification task [19].
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To create a probability, we will pass z (input features) through the sigmoid
function, σ(z). The sigmoid function is also called the logistic function, and
gives logistic regression its name. The sigmoid has the following equation,

σ(z) =
1

1 + e−z
(3.17)

The sigmoid function σ(z) takes a real value and maps it to the range [0,1].
It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

Figure 3.16: Sigmoid function[19]

3.6.2 LASSO Regression

LASSO or Least Absolute Shrinkage and Selection Operator regression regu-
larize against overfitting on the training data points and enforces sparsity on
the learned weights.

L1 Regularization

If a regression model uses the L1 regularization technique, then it is called
Lasso Regression. L1 regularization adds a penalty that is equal to the absolute
value of the magnitude of the coefficient. This regularization type can result
in sparse models with few coefficients. Some coefficients might become zero
and get eliminated from the model. Larger penalties result in coefficient values
that are closer to zero.
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The LASSO model can be shown as:

n∑
i=1

(yi −
∑
j

xijβj)
2 + λ

p∑
j=1

|βj| (3.18)

Where, β is a vector of coefficients, λ denotes the amount of shrinkage.
If λ = 0 implies all features are considered and it is equivalent to the linear
regression where only the residual sum of squares is considered to build a
predictive model. If λ = ∞ implies no feature is considered i.e, as λ closes to
infinity, it eliminates more and more features. The bias increases with increase
in λ and the variance increases with decrease in λ.

3.6.3 ElasticNet Regression

ElasticNet Regression is used to address the limitations of LASSO regression
such as it is non-convex nature. It uses a penalty function based on:

||β||1 =
p∑

j=1

|βj| (3.19)

Use of this penalty function has several limitations [48]. For example, if
there is a group of highly correlated variables, then LASSO tends to select one
variable from a group and ignore the others. To overcome these limitations,
the elastic net adds a quadratic part to the penalty (||β||2), where β is a vector
of coefficients, which when used alone is ridge regression 6. The estimates from
the elastic net method are defined by:

β ≡ argminβ(||y −Xβ||2 + λ2||β||2 + λ1||β||1) (3.20)

The quadratic penalty term makes the loss function strongly convex, and it
therefore has a unique minimum. The elastic net method includes the LASSO
and ridge regression, in which each of them is a special case where λ1 = λ,
λ2 = 0 or λ1 = 0, λ2 = λ. The naive version of elastic net method finds
an estimator in a two-stage procedure: For each fixed λ2 it finds the ridge
regression coefficients, and then does a LASSO type shrinkage. This type of
estimation incurs a double amount of shrinkage, which leads to increased bias

6Ridge regression is a method of estimating the coefficients of multiple-regression models
in scenarios where linearly independent variables are highly correlated.
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and poor predictions. To improve the prediction performance by rescaling the
coefficients of the naive version of elastic net by multiplying the estimated
coefficients by (1 + λ2) [48].

3.6.4 Gradient Boosting Regression

Gradient boosting approach can used for both regression and classification
problems. These techniques generate a prediction model in the form of a
series of weak prediction models, usually decision trees. Three components
are involved in gradient boosting:

• A loss function to be optimized.

• A weak learner to make predictions.

• An additive model to add weak learners to minimize the loss function.

3.6.5 XGBoost for Regression

XGBoost is a powerful approach for building supervised regression models.
The validity of this statement can be inferred by knowing about its (XGBoost)
objective function and base learners. The objective function contains a loss
function and a regularization term. The most common loss functions in XG-
Boost for regression problems is reg : linear, and that for binary classification
is reg : logistics.

Ensemble learning involves training and combining individual models to
get a single prediction, and XGBoost is one of the ensemble learning meth-
ods. XGBoost expects to have the base learners which are uniformly bad at
the remainder so that when all the predictions are combined, bad predictions
cancels out and better one sums up to form final good predictions.

The output of regression is either continuous or real values. There are
several metrics involved in regression like root-mean-squared error (RMSE)
and mean-squared-error (MAE). They are defined as follows:

• RMSE: Root Mean Square Error is the square root of the average of the
squared differences between the estimated and the actual value of the
variable/feature.

RMSE =

√√√√ 1

N

N∑
i=1

(Predictedi − Actuali)2 (3.21)
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• MAE: It is an absolute value of the sum of actual and predicted differ-
ences.

MAE = (
1

n
)

n∑
i=1

|yi − xi| (3.22)

3.6.6 Light Gradient Boosting Model

A Gradient Boosting Decision Tree or a GBDT is a very popular machine
learning algorithm that has effective implementations like XGBoost and many
optimization techniques are actually adopted from this algorithm [31]. The
main features of the LGBM model are as follows :

• Higher accuracy and a faster training speed.

• Low memory utilization.

• Comparatively better accuracy than other boosting algorithms and han-
dles overfitting much better while working with smaller datasets.

• Parallel learning support.

• Compatible with both small and large datasets.
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Chapter 4

Data Preparation and Model
Architecture

This chapter provides the data source and details the data preparation tech-
nique used in the thesis.

4.1 Data Source

The data used in the experiments is collected based on the interactions of
constituents with clients of Fundmetric, a Halifax based company whose ob-
jective is to help non-profit organizations raise more money by focusing on
turning one time donors into lifetime supporters. Fundmetric works with
organizations such as universities and disease related charities. They create
personalized emails and develop donor profiles based on their interaction with
the software. This approach generates a huge amount of data, more than the
competing communication platforms, which is provided to machine learning
algorithms to help achieve the objective of this research.

According to the Fundraising Effectiveness Project [4], more than 50% of
all donors stop donating after one year. This costs massively for the charities to
sustain the level of operations as they have to invest in new donor acquisition.
Fundmetric has been innovative in their approach to generate data needed by
charities to identify the most engaged donors as opposed to depending on siloed
information (features directly provided from donor data) and demographic
data.

The major donor data generated by Fundmetric is based on constituent
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interaction with charities. For our experiments, we collected data from 8
charities as shown in the Table 4.1.

Representation Type of charity
AlzC Alzheimer’s charity
CC Cancer charity
EC-1 Educational charity-1
EC-2 Educational charity-2
EC-3 Educational charity-3
EC-4 Educational charity-4
RC-1 Religious charity-1
RC-2 Religious charity-2

Table 4.1: Data sets from various charities.

These data sets have fewer major donors than non-major donors as seen
in Table 4.2. This means the major donor data is heavily skewed towards
non-major donors and needs to be balanced before training a model [25]. As
some of the features are categorical, we use one-hot encoding to convert them
to numerical format.

AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2
Major Donors 46 82 2080 4393 658 3226 1856 309
Non-Major donors 90859 52123 104677 76155 54121 211519 64843 101459

Table 4.2: Number of samples of each type in each data set.

4.1.1 Data Set Used

Charities have been gathering data on their constituents for tax purposes,
but there is also a database that can be used to find future donations. This
information includes the constituent’s address, as well as the donation amount
and date. As data analysis and machine learning technologies become more
common, charities recognize the value of data and begin to collect more data
to help differentiate between constituents. This data can be broken down
roughly into the following categories:

42



Demographic data

Demographic data include age, gender, income, and job title, but most chari-
ties do not keep track of these values for many constituents. Instead, address
information can be used to infer some of this information, and the method
of request is recorded to determine which solicitation methods and modes of
communication are acceptable to a constituent. Machine learning algorithms
can learn to distinguish constituents from each other based on this data, but
more is needed. Below is a list of subset features with name and description
for demographic data.

• Prefix - The constituent’s prefix.

• Gender - The constituent’s gender.

• Address - Address of residence.

• Age - How old is a constituent.

• Contact Email - Does the constituent allow email contact?

• Contact Phone - Does the constituent allow phone contact?

• City - The constituent’s city on mailing address.

• Province - The constituent’s province on mailing address.

• Country - The constituent’s country on mailing address.

Donation data

Donation data is recorded by charities not only for receipting purposes, but
also to track revenue. Donation dates and amounts can aid machine learning
algorithms, but they do not directly provide trend data to them. As a result
of these two simple features, we create new donation features such as largest
gift, smallest gift, and date of last donation. Below is a list of subset features
with name and description for donation data.

• Maximum Donation - Biggest donation made by constituent.

• Minimum Donation - Smallest donation made by constituent.

• Donation Count - Number of donations made be constituent.
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• Total Donations - Lifetime giving of constituent.

• Average Donation - Average of gift given by constituent.

• Standard Deviation - Standard deviation of gifts given by constituent.

• Variance - Variance of gifts given by constituent.

• Donation Lifetime - Total number of days from the constituent’s first
gift to last gift.

• Best Donation Type - Method of payment of largest donation made by
the constituent.

• Span Frequency - How often they gave while they were giving.

• True Frequency - How often they gave since they started giving.

• Days Since First/Last Donation - Number of days since first or last
donation.

• LYBUNT - Donor who gave Last Year But Unfortunately Not This Year.

• SYBUNT - Donor who gave Some Year But Unfortunately Not This
Year.

Educational data

University foundations benefit from a more in-depth understanding of their
constituents’ activities while they were students. These foundations use club
memberships, degree numbers, and graduation dates to determine what ma-
terials to send to their alumni, and machine learning can use these features as
well. Below is a list of subset features with name and description for education
data.

• Latest Graduation Year - Year the alumni finished their (last) degree.

• Latest School - What school the alumni (last) graduated from.

• Latest Degree Type - Type of degree/diploma (last) earned.

• Latest Degree Code - Institution specific code for (last) degree.

• Latest Major Code - Secondary category of (last) degree.
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Behavioural data

The interactions of constituents with a given charity are frequently not recorded
by the charity, but they can be an indicator of future giving. Whether a con-
stituent attends events, volunteers, opens charity emails, or watches charity
videos, both humans and computers can learn how much affinity a constituent
has for a charity. Below is a list of subset features with name and description
for behavioral data.

• Number of Emails Received - Number of emails sent that were actually
received.

• Percent Emails Opened - What percentage of emails does the constituent
open?

• Total Opens - Total number of email opens overall.

• Number of Clicks - Number of links clicked in all emails.

• Clicks per open - How many links are click when an email is opened?

• Clicks per received - How many links are clicked per received email?

• Total Engagement - Total number of engagement records.

• Unique Engagement Type Count - Total number of unique engagement
types performed.

• Top Engagement Type - Most performed engagement ”type” (name).

• Unique Engagement Service Count - Total number of unique engagement
services used.

• Top Engagement Service - Most performed ”service” used.

• Unique Engagement Action Count - Total number of unique actions
performed.

• Top Engagement Action - Most performed action.

• Total video engagement - Total number of engagement records.
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• Number of donation page views - Number of times the constituent viewed
one of our donation portal pages.

• Number of video page views - Number of times the constituent viewed
one of our video portal pages.

• Days Since Last Interaction - Number of days since last interaction in
any form.

Data of these four types can be used to analyze charities’ history, but more
importantly in this research, to help predict who is likely to give a major gift.
In the next chapter, we describe how we use this data to provide charities
with accurate lists of potential major donors, so that they can focus their time
on developing a relationship with potential major donors instead of trying to
build useful lists of potential donors themselves.

4.2 Data Preparation

One of the first things to do is check the shape and size of the data. We feed
the data in the form of comma separated value (CSV) files to machine learning
models whose dimension along the X-axis is the number of constituents and
the dimension along the Y-axis is the number of features. Once the dataset
has been loaded, the next step is to check for any missing values, as described
in the next section.

There are two different datasets fed to the machine learning model, major
donors (data which has major donations made by constituents) and non-major
donors (data where no major donations are made by constituents). The non-
major donors data have more samples (negatives) compared to major donor
data (positives) which makes the data unbalanced.

As the data in Table 4.2 are unbalanced, we balance the data of major
donors and non-major donors and then split into train (70%) and test (30%)
to feed it to the model and calculate the accuracy, precision, recall, and F1-
score. We first over-sample the major donors dataset and then balance using
the following approach.

We have over-sampled the minority class using synthetic minority over-
sampling technique (SMOTE). We define a SMOTE instance with default
parameters that will balance the minority class and then fit and apply it in
one step to create a transformed version of the dataset. Once transformed, we
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summarize the class distribution of the new transformed dataset, which would
now be balanced through the creation of many new synthetic examples in the
minority class.

The quality and size of data used are the key factors to determine the
performance of a machine learning model. So, it is important to examine and
preprocess the data set before feeding it to the machine learning algorithm.
The essential data preprocessing techniques used in this research were:

• Cleaning data by removing missing values for data set.

• Data transforms where attributes are scaled in order to best expose the
structure of the problem later to learning algorithms.

4.2.1 Dealing with missing values in dataset

It is common in real-world applications to have one or more values missing in
the samples for different reasons. This could have happened due to error in
data collection process or particular fields could have been simply left blank
and are represented as NaN (not a number) or null. Most statistical modeling
are unable to handle missing values and may produce unpredictable results if
not taken care of. In this research, all the null values are replaced with zero
because with neural networks, it is safe to input missing values as zero, with
the condition that zero is not already a meaningful value. The network will
learn from exposure to the data that the value zero means missing data and
will start ignoring the value.

4.2.2 Handling Categorical Data

Categorical data is also known as nominal and ordinal data. Categorical data
expresses an attribute that cannot be measured and it assumes values in a
finite or infinite set of values, often named levels. Many machine learning
algorithms require that categorical features/columns are encoded as integer
values.

The features used in the experiments are listed in Section 4.1. Some fea-
tures, such as “title” (e.g.,“Ms”) are nominal and thus need to be transformed
for most machine learning algorithms. We use one-hot encoding and create a
new feature for every value of each nominal feature, with exactly one of these
newly created features having value 1 for each parent feature, and the rest of
the values being 0.
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4.2.3 Handling Giveaway features

Giveaway features are features that can tell machine learning algorithms im-
mediately whether someone is a major donor. Intuitively, we would want
to use these features in our predictions to increase the accuracy of a model
differentiating between major donors and non-major donors, but a perfectly
accurate model (one that correctly classifies each major donor and non-major
donor) is not useful in terms of finding potential donors, since all non-major
donors will be classified as non-major donors by this model.

Instead, we seek accurate, but not perfect, models capable of identifying
non-major donors who resemble major donors and that are thus worth ap-
proaching. Giveaway features for major giving include maximum donation,
average donation, intercept, slope, total donations and standard deviation of
gifts, since values of these that are larger than the major giving threshold for
a charity can immediately reveal to a model who the major donors are, and
thus create a perfect, yet useless, model. We remove giveaway features from
the data in order to build useful models.

4.2.4 Hardware and Software Environment

The following are the hardware and software configurations used for model
development and testing.

Hardware configuration for local computer:

• CPU - Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz

• GPU - Intel(R) UHD Graphics

• RAM - 8GB

Software configuration:

• Python 3.8.5

• TensorFlow 2.4.1

• Keras 2.4.3

• Numpy 1.19.2
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• Matplotlib 3.3.2

• Scikit-Learn 0.24.2

The model is trained and tested on Jupyter Notebook 6.1.4 (Anaconda
IDE).
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Chapter 5

Theory and Approach

In this chapter, we describe the methods and approaches used in our ex-
periments to build the machine learning models. The data used to implement
these ML approaches are described in Chapter 4 and the empirical studies in
Chapter 6.

5.1 Problem Refinement

The goal of this study is to generate a list of major donors so that major gift
officers can focus their efforts on the most likely major donor constituents.
We use machine learning algorithms in order to try to accurately model major
giving, so that we can feed a model a constituent and get an accurate idea of
whether that constituent is likely to give a major gift.

The objectives of this research are:

• To build a model which accurately predicts major donor prospects for
charities.

• To build a model that predicts how much money major donor con-
stituents will contribute to the charity.
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5.2 Approach

For this study, we used real charitable data, such as demographic, donation,
educational, and behavioural data. This data was fed into machine learning
algorithms and tested on the non-major donor data in order to predict who
will become future major donors.

We were able to extract information about the variables using our under-
standing from the trained machine learning models and extensive exploratory
data analysis (EDA) [33]. EDA also aided in the statistical analysis, which was
then followed by the machine learning (ML) pipeline. It was also necessary to
merge major and non-major donors to see the differences in the patterns/be-
havior of the donors. In the step of data processing, we need to prepare our
data in specific ways before feeding into a machine learning model. One of
the examples is to perform a one-hot encoding on categorical data since, a lot
of algorithms cannot work directly with categorical data. Therefore, we need
to convert categorical data into a numerical form and our machine learning
algorithm can take in that as input.

We also experiment with only the donation and behavioural data and re-
moving giveaway features, demographic, and educational data to see how well
the models predict. Furthermore, we forecast how much money major donor
constituents will contribute to the charity.

5.3 Machine Learning Approaches

To achieve the objectives presented above, we built deep learning models
that learns from historical data. Here, the data is technically not time series,
neither sequential, these are individual observations LSTMs/RNNs is good for
time series data or sequential data as they learn the previous states of data, but
these can be used for more such as we are using them for classification. As seen
in [9], RNN performed well on non-sequential data with highest accuracy when
compared to other machine learning models. Our data is observations which
are not depending on time, there order does not matter, and one is totally
independent of others. It is like independent records. The following section
describes the deep learning models used for performing various experiments
using the LSTMs, RNNs, CNNs, GRUs and BDLSTM algorithms.
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Input dimension to Deep learning models

For all the machine learning models used in this research, the performance was
evaluated using a confusion matrix, accuracy, precision, recall and F1-score.
One of the input data1 provided to ML models is from an Educational Charity-
1 which has 2080 positive samples and 104677 negative samples that looks back
at 525 columns/features after one-hot encoding of the original features.

This input data has to be balanced as there are more negative samples
than positive samples (Table 4.2). After oversampling the dataset (Table 4.2)
using SMOTE technique, the shape of training and testing data is 4160 ×
525. Next, we used the train test split 2 function to split data arrays into two
subsets for training and testing data, then printing the size of the new dataset
which is transformed into 2675 × 525 (samples, features) and 1485 × 525. We
set the train size to 70% and test size to 30%. The input dimension for all the
models used must be three-dimensional, so, we reshape 2675 × 525 and 1485
× 525 to 2675 × 1 × 525 (samples, time steps, features) and 1485 × 1 × 525.
To evaluate the performance of the model, the experiments were conducted by
altering the network parameters of the models used in this research.

The input dimension mentioned in this section is provided to the ML mod-
els to perform various experiments seen in Chapter 6.

The RMSProp 3 and Adam 4 optimization technique were used to train
the networks for all the experiments and the network was trained on various
charities data (Table 4.1) for 100 epochs. RMSprop learning rate of 0.001
were used because it exponentially decays average of squared gradients and a
learning rate of 0.01 for Adam because, in addition to exponentially decaying
average of past squared gradients like RMSprop, it also stores an exponentially
decaying average of past gradients, and it is one of Keras default parameters.

1The input data used is from all the charities mentioned in Table 4.1
2The train test split procedure is used to estimate the performance of machine learning

algorithms to make predictions on data not used to train the model.
3RMSprop is a gradient-based optimization technique used in training neural networks

This normalization balances the step size (momentum), decreasing the step for large gradi-
ents to avoid exploding and increasing the step for small gradients to avoid vanishing.

4Adam is an adaptive learning rate method, it computes individual learning rates for
different parameters. Its name is derived from adaptive moment estimation.

53



5.3.1 LSTM-GRU

The Long Short-Term Memory-Gated Recurrent Unit (LSTM-GRU) architec-
ture is comprised of a sequence of long short-term memory, gated recurrent
unit, activation, dense, and dropout layers. LSTM-GRU uses fewer training
parameters and therefore uses less memory and executes faster with more accu-
rate results on a larger dataset when compared to supervised learning models.
The models were programmed in python, using the frameworks TensorFlow
and Keras. For training, a batch size of 64 was used.

The input data was transformed into 3D matrix form which is maintained
throughout the various layers of network. The network used for the experi-
ments consists of two long short-term memory layers, 1 gated recurrent unit
layer with fully connected dropout hidden layer. The dense layers were placed
at the output end of the network, concluding with an output layer utilizing a
ReLU and Sigmoid activation functions as seen in the Figure 5.1.

Figure 5.1: LSTM-GRU Network architecture used in experiments[5].

After performing numerous experiments by varying network configurations
and learning parameters, the best architecture was an LSTMGRU model that
consists of two LSTM layers, 1 GRU Layer, 3 dropout layers and a fully
connected block (Figure 5.1).

LSTM(512) reads the input data and outputs 512 features with 1 timestep
for each because return sequences = True. LSTM(256), takes the 1x512 in-
put from Layer 1 and reduces the feature size to 256. Since return sequences =
True, it outputs a feature vector of size 1x256. GRU(128), return sequences =
False it returns the last output.

5.3.2 SimpleRNN

The SimpleRNN architecture is comprised of a sequence of SimpleRNN, acti-
vation, dropout and dense layers. The input data was transformed into a 3D
matrix form which is maintained throughout the various layers of network.
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Figure 5.2: SimpleRNN Network architecture used in experiments[7].

After performing numerous experiments by varying network configurations
and learning parameters, the best architecture was a SimpleRNN model that
consists of 2 SimpleRNN blocks, 2 dropout layers and a fully connected block
(Figure 5.2) which is used for all the experiments in Chapter 6.

The initial SimpleRNN layer consisted of 512 units (dimensionality of
output space) which reads the input data and outputs 512 features with 1
timesteps for each because return sequences = True and kernel initializer =
glorot normal, a dropout layer and second SimpleRNN layer with 128 units
followed by a dropout layer and a fully connected dense layer.

5.3.3 GRU

The Gated Recurrent Unit (GRU) architecture is comprised of a sequence of
GRU, activation, dropout and dense layers. The input data was transformed
into 3D matrix form which is maintained throughout the various layers of
network. The network used for the experiments consists of two gated recurrent
unit layers and two dropout layers. The dense layers were placed at the output
end of the network, concluding with an output layer utilizing a ReLU and
Sigmoid activation functions as seen in the Figure 5.3.

Figure 5.3: GRU Network architecture used in experiments[34].

After performing numerous experiments by varying network configurations
and learning parameters, the best architecture was an GRUmodel that consists
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of 2 GRU blocks, 2 dropout layers and a fully connected block (Figure 5.3)
which is used for all the experiments in Chapter 6.

The initial GRU layer consisted of 128 units which reads the input data and
outputs 128 features with 1 timesteps for each because return sequences =
True and kernel initializer = glorot normal, a dropout layer and second
GRU layer with 64 units followed by a dropout layer and a fully connected
dense layer.

5.3.4 BDLSTM-GRU-TDL

The Bidirectional Long Short Term Memory-Gated Recurrent Unit-Time Dis-
tributed Layer (BDLSTM-GRU-TDL) architecture is comprised of a sequence
of BDLSTM, GRU, TDL, activation, dropout and dense layers. The input
data was transformed into 3D matrix form which is maintained throughout
the various layers of network. The network used for the experiments con-
sists of 1 bidirectional long short term memory layer, 1 gated recurrent unit
layer, 1 time distributed layer with fully connected ReLU hidden layer and
two dropout layers. One of the dense layers were placed at the output end of
the network, concluding with an output layer utilizing a Sigmoid activation
function as seen in the Figure 5.4.

Figure 5.4: BDLSTM-GRU-TDL Network architecture used in experiments[34].

After performing numerous experiments by varying network configurations
and learning parameters, the best architecture was an BDLSTM-GRU-TDL
model that consists of 1 BDLSTM layer, 1 GRU layer, 1 TDL layer, 2 dropout
layers and a fully connected block (Figure 5.4) which is used for all the exper-
iments in Chapter 6.

The initial BDLSTM layer consisted of 512 units which reads the input data
and outputs 1024 features with 1 timesteps for each because return sequences =
True and kernel initializer = glorot uniform, a dropout layer and followed
by a GRU layer with 256 units, a dropout layer and TDL layer with 128 units

56



with fully connected ReLU hidden layer, a fully connected dense layer with
Sigmoid activation function.

5.3.5 BDLSTM-CNN

The Bidirectional Long Short Term Memory-Convolutional Neural Network
(BDLSTM-CNN) architecture is comprised of BDLSTM, convolutional, acti-
vation, dense, and dropout layers. The input data was transformed into 3D
matrix form which is maintained throughout the various layers of network.
The network used for the experiments consists of 1 bidirectional long short
term memory layer, 1 convolutional layer with fully connected ReLU hidden
layer and 3 dropout layers. The dense layers were placed at the output end of
the network, concluding with an output layer utilizing a ReLU and Sigmoid
activation functions as seen in the Figure 5.5.

Figure 5.5: BDLSTMCNN Network architecture used in experiments[38].

After performing numerous experiments by varying network configurations
and learning parameters, the best architecture used in the experiments in
Chapter 6 was an BDLSTM-CNN that consists of 1 BDLSTM and 1 convolu-
tional blocks, 3 dropout layers and a fully connected block (Figure 5.5).

The initial BDLSTM layer consisted of 512 units which reads the input data
and outputs 1024 features with 1 timesteps for each because return sequences =
True and kernel initializer = glorot uniform, a dropout layer and a convo-
lutional layer consists of 256 units, 1 kernel size and a hidden ReLU activation
function, which is followed by a dense layer with a hidden ReLU and Sigmoid
activation functions and 2 dropout layers.

5.4 Other Machine Learning Approaches

To achieve the objectives presented in Section 5.2, we built a machine learn-
ing model that learns from historical data. The following section describes
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the machine learning models used for performing various experiments using
gaussian naive-bayes, support vector machines, decision trees, random forest,
extra trees, Adaboost, gradient boosting and logistic regression.

Supervised learning models

K-fold is a cross-validator that divides the dataset into k folds. Stratified is to
ensure that each fold of dataset has the same proportion of observations with
a given label. The folds are made by preserving the percentage of samples for
each class. It is used for estimating the performance of a machine learning
algorithm on the dataset. It uses a limited sample in order to estimate how
the model is expected to perform in general when used to make predictions on
data not used during the training of the model. The procedure has a single
parameter called k that refers to the number of groups that a given data sample
is to be split into. When a specific value for k is chosen, it is used in place of
k in the reference to the model, such as k=3 becoming 3-fold cross-validation.

Input dimension to Machine learning models

For all the machine learning models used in this research, the performance was
evaluated using a confusion matrix, a classification report and the mean recall
score. One of the input data5 provided to ML models is from a Religious
charity-1 which has 1856 positive samples and 64843 negative samples that
looks back at 134 columns/features.

This input data has to be balanced as there are more negative samples than
positive samples (Table 4.2). We first over sample the major donor dataset
(Table 4.2) using SMOTE technique, the shape of training and testing data is
3712 × 134. Further, we used the train test split function to split data arrays
into two subsets for training and testing data, then printing the size of the
new dataset which is transformed into 2598 × 134 and 1114 × 134 (samples,
features). We set the train size to 70% and test size to 30%. To evaluate
the performance of the model, the experiments were conducted by altering the
network parameters of the models used in this research.

The input dimension mentioned in this section is provided to the ML mod-
els to perform the various experiments seen in Chapter 6.

5The input data used is from all the charities mentioned in Table 4.1
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Building cross-validation models

K-fold cross-validation is a method for estimating the performance of a model
on an unseen data. It is a technique used for hyperparameter tuning such that
the model with the most optimal value of hyperparameters can be trained.

The following is done in this technique for training and testing the model:

1. Instance of StratifiedKFold is created by passing number of folds
(nsplits=3). Since, we have large datasets, we can use the value of K
from 3 to 5 folds to obtain an accurate estimate of the average perfor-
mance of the model while reducing the computational cost of refitting
and evaluating the model on different folds. The number of folds in-
creases if the data is relatively small. However, larger values of k results
in increase of the runtime of the cross-validation algorithm.

2. Split method is invoked on the instance of StratifiedKFold to gather the
indices of training and test splits for 3 folds.

3. The cross val score() function is used to perform the evaluation, taking
the dataset and cross-validation configuration and returning a list of
scores calculated for each fold.

4. We created multiple models and averaged the results to check for means
and standard deviations in the model metrics.

Exhaustive grid search for classification

The grid search 6 exhaustively generates candidates from a grid of parameter
values specified with the param grid parameter. It iterates over the classifiers,
fits the classifiers on the training set, making predictions on the training set
and finally evaluates the classifiers. The apparent best classifier is then used
to make predictions on the test set. The cv results attribute contains useful
information for analysing the results of this search.

6It is a tuning technique that attempts to compute the optimum values of hyperpa-
rameters and was performed on a specific parameter values for the model provided by
GridSearchCV .

59



Parameterizations for each algorithm

• Decision Tree: We have 4 values/experiments for one parameter which
is max depth.

• Adaboost: We have 5 values/experiments for one parameter which is
learning rate.

• Random Forest: We have 7 values/experiments for 3 parameter which
are max depth, max features and n estimators.

• Gradient Boosting: We have 7 values/experiments for 3 parameters
which are max depth, learning rate and n estimators.

• Extra Trees Classifier: We have 10 values/experiments for 3 pa-
rameters which are criterion, max features, min samples leaf and
min samples split.

The performance was evaluated using confusion matrix, accuracy, preci-
sion, recall and F1 score.

5.5 Evaluation metrics

Confusion Matrix:

It is a performance measurement for machine learning classification problem
where output can be two or more classes. It is a table with four different com-
binations of predicted and actual values. It is useful for measuring accuracy,
precision, recall and specificity.

To evaluate the major donor model, we have taken four evaluation metrics
into consideration, where TP stands for true positive, FP stands for false
positive, TN stands for true negative, and FN stands for false negative.

Classification Accuracy:

The base metric used for model evaluation is accuracy, describing the number
of correct predictions over all predictions:

Accuracy =
TP + TN

TP + FP + FN + TN
(5.1)
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We use accuracy score function of sklearn.metrics to compute accuracy of
our classification model.

Classification Report:

This report consists of the scores of precision, recall, and F1-score. They are
explained as follows:

Precision:

Precision is a measure of how many of the positive predictions made are correct
(true positives).

Precision =
TP

TP + FP
(5.2)

Recall or Sensitivity:

Recall is a measure of how many of the positive cases the classifier correctly
predicted, over all the positive cases in the data.

Recall =
TP

TP + FN
(5.3)

F1-Score:

F1-Score is a measure combining both precision and recall.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(5.4)
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Chapter 6

Empirical Studies

This chapter describes five experiments performed using 16 machine learn-
ing algorithms: Random forest classifier, Adaboost, gradient boosting, extra
trees classifier, gaussian naive-bayes, decision tree, logistic regression, LSTM-
GRUs, SimpleRNNs, GRUs, BDLSTM-GRU-TDLs, BDLSTMCNNs, LASSO
regression, ElasticNet, XGBoost and Light GBM. The experiments performed
are as follows:

• Build a model to predict major donor prospects for charities, which will
later be described as two experiments.

• Build a model using only donation data to predict major donors for
charities.

• Build a model using only donation and behavioural data to predict major
donors for charities.

• Build a model that predicts how much money major donor constituents
will contribute to a charity.

6.1 Initial Experiments

The initial experiments were carried out on balanced datasets using random
forest classifiers, Adaboost, extra trees classifiers, gaussian naive-bayes, deci-
sion trees and logistic regression to see how well the machine learning models
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can predict the potential major donors, since supervised machine learning al-
gorithms requires less computing power and takes few seconds to few hours to
train rather than deep learning algorithms which are more complex to set up
and demand more powerful hardware and resources which requires increased
use of graphical processing units. GPUs are useful for high bandwidth memory
and ability to hide latency (delays) in memory transfer due to thread paral-
lelism (the ability of many operations to run efficiently at the same time).

Non-major donors (negative cases) outnumber major donors (positive cases)
for all charities. Data was balanced in all experiments in order to not bias the
model strongly towards negative cases. Testing data was kept separate from
training data and all results shown are on testing data.

We used confusion matrices as a metric to evaluate our models, since we
seek a model that will predict with high accuracy and some false positives. A
model that is perfectly accurate is useless since it gives no prospects. However,
a model with too many false positives is likely to be erroneous. As a result,
they must be balanced. Models that give no false positives find no potential
major donors, which is not what we want. False positives are what we seek
for. False negatives (major donors classified as non-major donors) are what we
want to avoid, since we know this is wrong (a major donor is a major donor
and cannot not be a major donor, but a non-major donor could become a
major donor).

6.2 Experiment 1: Predicting major donor

prospects using supervised learning mod-

els

6.2.1 Objective

The goal of this experiment was to demonstrate supervised learning models
ability to predict major donor prospects for charities. If the supervised learning
model can predict a major donor with high accuracy and some false positive
values, it can be inferred that the supervised learning models can be utilized
to predict future major donors.
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6.2.2 Data and Approach

The data we used for this experiment is from 8 charities as provided in the
below Table 6.1: an Alzheimer’s charity, a cancer charity, 2 religious charities
and 4 educational charities. The input dimension for training and testing
the ML models for this experiment is provided in Section 5.4 and the data
preparation are provided in Section 4.2. In this experiment the ML models
were built using the best architectures mentioned in Section 5.4.

AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2
Major Donors 46 82 2080 4393 658 3226 1856 309
Non-Major donors 90859 52123 104677 76155 54121 211519 64843 101459

Table 6.1: Number of samples of each type in each data set.

6.2.3 Results and Discussion

From the results produced by the above listed models, the test accuracy of the
model for classifying the predicted value is shown in Table 6.7.

The results shown in Tables 6.2, 6.3, 6.4, 6.5 and 6.6 are from the predic-
tions using random forest classifier, Adaboost classifier, extra trees classifier,
Gaussian Naive-Bayes, decision tree and logistic regression respectively.

Table 6.2 shows the results on EC-1 data for predicting major donors.
From the results produced for charity EC-1, the best performing model was a
random forest classifier with test accuracy of 94.47%. Table 6.2 shows values
for classifying 1485 donors as seen in Section 5.4 (which includes 719 major
donors and the remaining 766 are non-major donors) as major or non-major
donors. Out of 719 major donors, 668 of them are classified correctly with
precision of 95.56% (Table 6.8) and the remaining 51 major donors are clas-
sified as non-major donors by random forest classifier. F1-Score (Table 6.10)
measures a balance between precision and recall and if there is an uneven class
distribution (large number of actual negatives). Out of 766 donors in the non-
major donors category, 735 are classified as non-major donors with recall of
92.90% (Table 6.9) and the remaining 31 are classified as major donors. These
are the constituents we are looking for, who might give a major gift, but we are
looking for more false positive values, without comprising too much accuracy
for the random forest model to be useful to predict major donors.
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TP FP FN TN
Logistic Regression 649 28 70 738
Gaussian Naive Bayes 570 306 149 460
Decision Tree 633 150 86 616
Random Forest 668 31 51 735
AdaBoost 552 77 167 689
ExtraTrees 679 71 40 695

Table 6.2: Results for predicting major donor prospects using supervised learn-
ing for EC-1 charity with 1485 constituents.

Table 6.3 shows the results on EC-2 data for classifying 2120 (with simi-
lar calculations as seen in Section 5.4) donors as major donors or non-major
donors. The best performing model for EC-2 charity was Adaboost (as seen in
Table 6.7) with test accuracy of 91.83%. Out of 908 major donors, 822 major
donors are classified correctly with precision of 91.25% (Table 6.8) and the
remaining 86 major donors are classified as non-major donors by Adaboost.
Conversely, out of 1212 donors in the non-major donors category, 1125 are clas-
sified as non-major donors with recall of 90.52% (Table 6.9) and the remaining
87 are classified as major donors.

TP FP FN TN
Logistic Regression 745 165 163 1047
Gaussian Naive Bayes 775 1193 133 19
Decision Tree 524 508 384 704
Random Forest 605 58 303 1154
AdaBoost 822 87 86 1125
ExtraTrees 672 90 236 1122

Table 6.3: Results for predicting major donor prospects using supervised learn-
ing for EC-2 charity with 2120 constituents.

The results on EC-3 charity for classifying 374 donors (with similar calcu-
lations as seen in Section 5.4) as major donors or non-major donors is shown in
Table 6.4. The best performing model for charity EC-3 was decision trees (as
seen in Table 6.7). The model’s test accuracy in classifying the predicted value
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is 96.79%. Out of 222 major donors, 213 major donors are classified correctly
with precision of 98.61% (Table 6.8) and the remaining 3 major donors are
classified as non-major donors by decision trees. In the non-major donors cat-
egory, 149 are classified as non-major donors with recall of 95.94% (Table 6.9)
and the remaining 3 are classified as major donors.

TP FP FN TN
Logistic Regression 212 16 10 136
Gaussian Naive Bayes 168 101 54 51
Decision Tree 213 3 9 149
Random Forest 195 31 27 121
AdaBoost 161 31 61 121
ExtraTrees 186 13 36 139

Table 6.4: Results for predicting major donor prospects using supervised learn-
ing for EC-3 charity with 374 constituents.

The RC-1 charity results for classifying 1114 donors (with similar calcu-
lations as seen in Section 5.4) as major or non-major donors is shown in Ta-
ble 6.5. The best performing model for charity RC-1 was logistic regression
(as seen in Table 6.7). The test accuracy of the model when classifying the
predicted value is 93.35%. Out of 512 major donors, 480 major donors are
classified correctly with precision of 91.95% (Table 6.8) and the remaining 32
major donors are classified as non-major donors by logistic regression. In the
non-major donors category, 560 are classified as non-major donors with recall
of 93.75% (Table 6.9) and the remaining 42 are the donors we are looking for
who could give major gifts, that the model actively predicted positive.
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TP FP FN TN
Logistic Regression 480 42 32 560
Gaussian Naive Bayes 271 172 241 430
Decision Tree 387 115 125 487
Random Forest 439 90 73 512
AdaBoost 445 134 67 468
ExtraTrees 443 132 69 470

Table 6.5: Results for predicting major donor prospects using supervised learn-
ing for RC-1 charity with 1114 constituents.

Table 6.6 shows the results for a cancer charity for classifying 51 donors
(with similar calculations as seen in Section 5.4) as major or non-major donors.
The best performing model for a cancer charity was logistic regression (as seen
in Table 6.7). The test accuracy of the model when classifying the predicted
value is 96.07%. Out of 22 major donors, 21 major donors are classified cor-
rectly with precision of 95.45% (Table 6.8) and the remaining 1 major donors
are classified as non-major donors by logistic regression. In the non-major
donors category, 28 are classified as non-major donors with recall of 95.45%
(Table 6.9) and the remaining 1 are the donors we are looking for who could
give major gifts, however, we need more false positive values for the logistic
regression model to be useful in predicting major donors.

TP FP FN TN
Logistic Regression 21 1 1 28
Gaussian Naive Bayes 15 9 7 20
Decision Tree 17 8 5 21
Random Forest 21 2 1 27
AdaBoost 20 5 2 24
ExtraTrees 18 2 4 27

Table 6.6: Results for predicting major donor prospects using supervised learn-
ing for a cancer charity with 51 constituents.
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Models Logistic Regression Gaussian Naive Bayes Decision Tree Random Forest AdaBoost ExtraTrees
AlzC 53.57%±0.060 78.57%±0.396 85.71%±0.226 92.85%±0.046 78.57%±0.299 85.71%±0.302
CC 96.07%±0.170 68.62%±0.246 74.50%±0.029 94.11%±0.162 86.27%±0.068 88.23%±0.148
EC-1 93.40%±0.037 69.36%±0.217 84.10%±0.057 94.47%±0.127 83.56%±0.092 92.52%±0.117
EC-2 84.52%±0.111 37.45%±0.009 57.92%±0.035 82.97%±0.023 91.83%±0.045 84.62%±0.042
EC-3 93.04%±0.031 58.55%±0.198 96.79%±0.020 84.49%±0.017 75.40%±0.020 86.89%±0.011
EC-4 69.42%±0.088 51.70%±0.159 70.97%±0.072 90.44%±0.159 88.94%±0.110 83.21%±0.155
RC-1 93.35%±0.264 62.92%±0.284 85.90%±0.027 85.36%±0.168 81.95%±0.135 81.95%±0.202
RC-2 87.63%±0.015 52.68%±0.015 72.04%±0.056 96.77%±0.014 93.54%±0.005 82.79%±0.014
Mean 83.87%±0.097 59.98%±0.190 78.49%±0.065 90.85%±0.089 85%±0.096 87.15%±0.123

Table 6.7: Accuracies for major donor prediction using supervised learning for
all charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
Logistic Regression 54.16% 95.45% 95.86% 81.86% 92.98% 63.93% 91.95% 91.30% 83.29%
Gausian Naive Bayes 72.56% 62.50% 65.06% 39.38% 62.45% 53.24% 75.27% 53.14% 58.79%
Decision Tree 92.30% 68% 80.84% 50.77% 98.61% 76.29% 93.62% 91.22% 81.45%
Random Forest 82.34% 91.30% 95.56% 91.25% 86.28% 98.37% 82.98% 92.43% 89.68%
AdaBoost 80% 80% 87.75% 90.42% 83.85% 86.03% 76.85% 93.93% 85.12%
ExtraTrees 92.20% 90% 90.53% 88.18% 93.46% 89.82% 77.04% 98.55% 89.97%

Table 6.8: Precision for major donor prediction using supervised learning for
all charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
Logistic Regression 86.56% 95.45% 90.26% 49.40% 95.49% 87.79% 93.75% 84.84% 85.35%
Gausian Naive Bayes 60% 68.18% 79.27% 85.35% 75.67% 32.50% 45.54% 90.23% 65.69%
Decision Tree 80% 77.27% 88.03% 57.70% 95.94% 60.06% 78.99% 52.52% 73.81%
Random Forest 86.66% 95.23% 92.90% 66.62% 87.83% 82.06% 85.74% 93.93% 87.34%
AdaBoost 80% 90.90% 76.77% 90.52% 72.52% 86.23% 86.91% 92.83% 95.77%
ExtraTrees 80% 81.81% 94.43% 74% 83.78% 74.55% 86.52% 68.68% 82.17%

Table 6.9: Recall for major donor prediction using supervised learning for all
charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
Logistic Regression 66.63% 95.45% 92.97% 61.61% 94.21% 73.98% 92.84% 87.95% 83.09%
Gausian Naive Bayes 65.68% 65.21% 71.46% 53.89% 59.67% 40.36% 56.74% 66.88% 59.50%
Decision Tree 85.71% 72.33% 84.28% 54.01% 97.25% 67.21% 85.68% 66.66% 76.64%
Random Forest 84.44% 93.22% 94.21% 77.01% 89.01% 89.48% 84.33% 92.57% 76.90%
AdaBoost 80% 85.10% 81.89% 90.46% 80.58% 88.54% 81.57% 93.37% 85.18%
ExtraTrees 85.66% 85.70% 92.43% 80.47% 95.37% 81.48% 81.50% 80.95% 85.44%

Table 6.10: F1-Score for major donor prediction using supervised learning for
all charities.
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6.2.4 Summary

We experimented with six different ML models for 8 charities in order to
accurately predict future major donor prospects. For the ML models used in
this research, we are looking for bigger false positive values than false negatives,
which indicates who might give a major gift. Based on the mean accuracy and
confusion matrices values on the training set, the best performing model was
random forest classifier (as seen in Table 6.7) to predict major donors on the
test data. However, the false positive values for educational charities (EC-1
(Table 6.2) and EC-3 (Table 6.4)) and a cancer charity (Table 6.6) are less
than false negative values and need to be increased. Gaussian Naive Bayes,
predicts with more false positives for educational charities (EC-1, EC-2 and
EC-3), religious (RC-1) and a cancer charity than other models, but with less
accuracy as seen in Table 6.7. In the upcoming experiment, we will evaluate
various deep learning techniques looking to improve the false positives.

Based on the analysis of each models during training, we used the best
performing model obtained for each charities to predict future major donors.
For example, for EC-1 charity, the best performing model was random forest
classifier, we used that model to make predictions on the test data. As for some
of the charities the major donors ranges from 100, and charities generally does
not contain major donors in the range of 25,000/50,000. Table 6.11 shows the
final 1 predicted major and non-major donors on the test set.

Labels AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2
1 (Predicted Major donors) 1491 955 408 2346 144 686 1402 1883
0 (Predicted Non-Major donors) 89368 51168 104269 73809 53977 210833 63441 99576

Table 6.11: Major donors for all the charities using supervised learning algo-
rithms.

1A final machine learning model is a model that we use to make predictions on new/test
data.
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6.3 Experiment 2: Predicting major donor

prospects using deep learning

6.3.1 Objective

The false positives for educational charities (EC-1 and EC-3) and a cancer
charity are less than false negatives, as tested in previous experiments. In order
to predict major donors, we need high accuracy and more false positives. This
experiments objective is to improve the false positive values while maintaining
similar accuracies to Experiment 1 for most of the charities using deep learning
techniques for predicting major donor prospects.

6.3.2 Data and Approach

The data we used for this experiment is the same data used in Experiment
1 which is from 8 charities: an Alzheimer’s charity, a cancer charity, 2 reli-
gious charities and 4 educational charities (Table 4.2). The input dimension
for training and testing the ML models for this experiment is provided in
Section 5.3 and the data preparation are provided in Section 4.2. In this ex-
periment the ML models were built using the best architectures mentioned in
Tables 6.12, 6.13, 6.14, 6.15, and 6.16 with the learning rate of 0.001 and 0.01
for RMSprop and Adam optimizers.

LSTM-GRU Parameters AlzC CC EC-1 EC-2 EC-3, EC-4, RC-1 and RC-2
LSTM Layer 1 1024 512 512 512 512
Dropout 0.2 0.2 0.2 0.2 0.2
LSTM Layer 2 512 256 64 256 256
Dropout 0.2 0.2 0.2 0.2 0.2
GRU 512 128 32 128 128
Dropout 0.2 0.2 0.2 0.2 0.2
Activation Function ReLU ReLU ReLU ReLU ReLU
Activation Function ReLU ReLU ReLU ReLU tanh
Activation Function Sigmoid ReLU Sigmoid Sigmoid Sigmoid
Optimizer RMSprop RMSprop RMSprop RMSprop RMSprop

Table 6.12: Best performing LSTM-GRU architectures for all the charities.
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RNN Parameters AlzC CC, EC-1, EC-2, EC-3, EC-4, RC-1 and RC-2
SimpleRNN Layer 1 512 512
Dropout 0.2 0.3
SimpleRNN Layer 2 128
Dropout 0.3
Activation Function ReLU ReLU
Activation Function ReLU ReLU
Activation Function Sigmoid Sigmoid
Activation Function Sigmoid Sigmoid
Optimizer RMSprop RMSprop

Table 6.13: Best performing SimpleRNN architectures for all the charities.

GRU Parameters AlzC CC EC-1 EC-2, EC-3, EC-4, RC-1 and RC-2
GRU Layer 1 512 512 128 512
Dropout 0.3 0.3 0.3 0.3
GRU Layer 2 156 156 64 156
Dropout 0.3 0.3 0.3 0.3
Activation Function ReLU ReLU ReLU ReLU
Activation Function ReLU ReLU ReLU ReLU
Activation Function Sigmoid Sigmoid Sigmoid Sigmoid
Optimizer RMSprop RMSprop Adam RMSprop

Table 6.14: Best performing GRU architectures for all the charities.

BDLSTM-GRU-TDL Parameters AlzC CC EC-1 EC-2, EC-3, EC-4, RC-1 and RC-2
BDLSTM Layer 512 512 512 512
Dropout 0.3 0.3 0.2 0.3
GRU Layer 256 256 256 256
Dropout 0.3 0.3 0.2 0.3
TDL Layer
Activation Function ReLU ReLU ReLU ReLU
Activation Function Sigmoid Sigmoid Sigmoid Sigmoid
Optimizer RMSprop RMSprop RMSprop RMSprop

Table 6.15: Best performing BDLSTM-GRU-TDL architectures for all the
charities.
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BDLSTM-CNN Parameters AlzC, CC, EC-1, EC-2, EC-3, EC-4, RC-1 and RC-2
BDLSTM Layer 512
Dropout 0.2
Conv1D 256
Activation Function ReLU
Kernal Size 1
Activation Function ReLU
Dropout 0.2
Activation Function ReLU
Dropout 0.2
Activation Function Sigmoid
Optimizer RMSprop

Table 6.16: Best performing BDLSTM-CNN architectures for all the charities.

6.3.3 Results and Discussion

The results shown in Tables 6.17, 6.18, 6.19, 6.20 and 6.21 are from the pre-
dictions using LSTM-GRUs, SimpleRNNs, GRUs, BDLSTM-GRU-TDLs and
BDLSTMCNNs respectively. We split the data into 2 sets training and test
set and ran the models for 5 trials and averaged all the values to get mean and
standard deviation values through cross validation and calculated the accuracy,
precision, recall and F1-score using deep learning models, which saw increase
in false positive values with slight decrease in accuracies when compared to
Experiment 1 for predicting future major donors.

Table 6.17 shows the results on EC-1 data for predicting major donors us-
ing the best performing LSTM-GRUs, SimpleRNNs, GRUs, BDLSTM-GRU-
TDLs and BDLSTMCNNs architectures as seen in Tables 6.12, 6.13, 6.14, 6.15
and 6.16. Table 6.17 shows values for classifying 1485 donors as seen in Sec-
tion 5.3 (which includes 719 major donors and 766 are non-major donors) as
major donors or non-major donors. Out of 719 major donors, 669 of them are
classified correctly with precision of 85.76% (Table 6.23) and the remaining
50 major donors are classified as non-major donors by LSTM-GRU. Out of
766 donors in the non-major donors category, 655 are classified as non-major
donors with recall of 93.04% (Table 6.24) and the remaining 111 are classi-
fied as major donors. From the results produced for charity EC-1, the best
performing model was LSTM-GRU. The average number of false positives af-
ter 5 trials is 111±9 for the LSTM-GRU model. The test accuracy of the
model for classifying the predicted value is 89.15%±0.058, which when com-
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pared to Experiment 1 shows slight decrease in ML models accuracy (Best
accuracy: 94.47%±0.127), but higher false positive (False positive: 31) and
lower false negative (False negative: 51) values for EC-1 charity. From the
analysis, LSTM-GRU model is performing well with respect to higher false
positive values when compared to Experiment 1 for EC-1 charity.

TP FP FN TN
LSTM-GRU 669 111 50 655
RNN 606 136 113 630
GRU 650 132 69 634
BDLSTM-GRU-TDL 643 113 76 653
BDLSTM-CNN 646 121 73 645

Table 6.17: Results for predicting major donor prospects for EC-1 charity with
1485 constituents.

Table 6.18 shows the results on EC-2 data for classifying 2120 donors as
major donors or non-major donors. Out of 908 major donors, 764 major
donors are classified correctly with precision of 76.24% (Table 6.23) and the
remaining 144 major donors are classified as non-major donors by LSTM-
GRU. Conversely, out of 1212 donors in the non-major donors category, 974
are classified as non-major donors with recall of 84.14% (Table 6.24) and the
remaining 238 are classified as major donors. As per the results from Table 6.22
for charity EC-2, the best performing model was LSTM-GRU. The average
number of false positives after 5 trials is 238±2 for the LSTM-GRUmodel. The
test accuracy of the model for classifying the predicted value is 81.98%±0.027,
which when compared to Experiment 1 shows decrease in ML models accuracy
(Best accuracy: 91.83%±0.045), but higher false positive (False positive: 87)
and false negative (False negative: 86) values for EC-2 charity. From the
analysis, LSTM-GRU model is performing well with respect to higher false
positive values when compared to Experiment 1 for EC-2 charity.
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TP FP FN TN
LSTM-GRU 764 238 144 974
RNN 755 254 153 958
GRU 744 289 164 923
BDLSTM-GRU-TDL 748 288 160 924
BDLSTM-CNN 727 273 181 939

Table 6.18: Results for predicting major donor prospects for EC-2 charity with
2120 constituents.

The results for EC-3 charity for classifying 374 donors as major donors
or non-major donors is shown in Table 6.19. The best performing model for
charity EC-3 was RNN (as seen in Table 6.22). Out of 222 major donors,
201 major donors are classified correctly with precision of 85.89% (Table 6.23)
and the remaining 21 major donors are classified as non-major donors by
RNN. In the non-major donors category, 119 donors are classified as non-
major donors with recall of 90.54% (Table 6.24), while the remaining 33 are
classified as major donors. The average number of false positives after 5 trials
is 33±5 for the RNN model. The model’s test accuracy in classifying the
predicted value is 85.56%±0.016, which when compared to Experiment 1 shows
decrease in ML models accuracy (Best accuracy: 96.79%±0.020), but higher
false positive (False positive: 3) and false negative (False negative: 9) values
for EC-3 charity. From the analysis, RNN model is performing well with
respect to higher false positive values when compared to Experiment 1 for
EC-3 charity.

TP FP FN TN
LSTM-GRU 208 43 14 109
RNN 201 33 21 119
GRU 188 50 34 102
BDLSTM-GRU-TDL 184 44 38 108
BDLSTM-CNN 188 40 34 112

Table 6.19: Results for predicting major donor prospects for EC-3 charity with
374 constituents.
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The RC-1 charity results for classifying 1114 donors as major or non-major
donors is shown in Table 6.20. The best performing model for charity RC-1
was LSTM-GRU (as seen in Table 6.22). Out of 512 major donors, 472 major
donors are classified correctly with precision of 81.09% (Table 6.23), while the
other 40 major donors were classified as non-major donors by LSTM-GRU. In
the non-major donors category, 492 donors are classified as non-major donors
with recall of 92.18% (Table 6.24), and the remaining 110 are the donors we
are looking for who could give major gifts, that the model actively predicted
positive. The average number of false positives after 5 trials is 110±12 for
the LSTM-GRU model. The test accuracy of the model when classifying
the predicted value is 92.19%±0.012, which when compared to Experiment 1
shows slight decrease in ML models accuracy (Best accuracy: 93.35%±0.264),
but higher false positive values (False positive: 42) and false negative (False
negative: 32) values for RC-1 charity. From the analysis, LSTM-GRU model
is performing well with respect to higher false positive values when compared
to Experiment 1 for RC-1 charity.

TP FP FN TN
LSTM-GRU 472 110 40 492
RNN 459 132 53 470
GRU 473 122 39 480
BDLSTM-GRU-TDL 456 89 56 513
BDLSTM-CNN 480 102 32 500

Table 6.20: Results for predicting major donor prospects for RC-1 charity with
1114 constituents.

Table 6.21 shows the results for a cancer charity for classifying 51 donors
as major or non-major donors. The best performing model for a cancer charity
was BDLSTM-GRU-TDL (as seen in Table 6.22). Out of 22 major donors, 20
major donors are classified correctly with precision of 95.23%, while the other
2 major donors were classified as non-major donors by BDLSTM-GRU-TDL.
In the non-major donors category, 28 donors are classified as non-major donors
with recall of 90.90% (Table 6.24), and the remaining 1 are the donors we are
looking for who could give major gifts. The average number of false positives
after 5 trials is 1±1 for the BDLSTM-GRU-TDL model. The test accuracy
of the model when classifying the predicted value is 94.11%±0.017, which
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when compared to Experiment 1 shows slight decrease in ML models accuracy
(Best accuracy: 96.07%±0.170), but same false positive (False positive: 1)
and higher false negative (False negative: 1) values for a cancer charity. From
the analysis, logistic regression model from Experiment 1 is performing well
with respect to higher accuracies and same false positive values for a cancer
charity.

TP FP FN TN
LSTM-GRU 19 2 3 27
RNN 16 3 6 26
GRU 19 1 3 28
BDLSTM-GRU-TDL 20 1 2 28
BDLSTM-CNN 19 9 3 20

Table 6.21: Results for predicting major donor prospects for a cancer charity
with 51 constituents.

Models LSTM-GRU RNN GRU BDLSTM-GRU-TDL BDLSTM-CNN
AlzC 85.38%±0.042 82.30%±0.026 88%±0.015 88.66%±0.013 89.74%±0.032
CC 90.19%±0.026 82.35%±0.048 92.15%±0.009 94.11%±0.017 76.47%±0.005
EC-1 89.15%±0.058 83.23%±0.012 86.46%±0.022 87.27%±0.014 86.93%±0.017
EC-2 81.98%±0.027 80.80%±0.031 78.63%±0.036 78.86%±0.032 78.58%±0.029
EC-3 84.75%±0.042 85.56%±0.016 77.54%±0.041 78.07%±0.056 80.21%±0.039
EC-4 90.50%±0.028 90.84%±0.005 91%±0.008 90.66%±0.035 90.88%±0.029
RC-1 92.19%±0.012 83.39%±0.029 85.54%±0.028 86.98%±0.031 87.97%±0.041
RC-2 95.02%±0.005 96.86%±0.011 96.94%±0.016 95.50%±0.029 96.54%±0.057
Mean 88.64%±0.030 85.66%±0.022 87.03%±0.020 87.51%±0.042 85.91%±0.035

Table 6.22: Accuracies for major donor prediction for all charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 86.83% 90.47% 85.76% 76.24% 82.86% 91.16% 81.09% 95.63% 86.25%
RNN 86% 84.21% 83.12% 74.82% 85.89% 90.49% 77.66% 97.79% 84.99%
GRU 86.13% 95% 83.12% 72.02% 78.99% 90.70% 79.49% 97.64% 86.63%
BDLSTM-GRU-TDL 85.75% 95.23% 85.05% 72.20% 80.70% 90.55% 83.66% 95.69% 86.10%
BDLSTM-CNN 89.14% 67.85% 84.22% 72.70% 82.45% 92% 82.47% 95.90% 83.34%

Table 6.23: Precision for major donor prediction for all charities.
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Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 82% 86.36% 93.04% 84.14% 93.69% 91.09% 92.18% 94.72% 89.65%
RNN 82.66% 72.72% 84.28% 83.14% 90.54% 91.77% 89.64% 96.12% 86.35%
GRU 90.66% 86.36% 90.40% 81.93% 84.68% 91.86% 92.38% 96.43% 89.28%
BDLSTM-GRU-TDL 88% 90.90% 89.42% 82.37% 82.88% 91.29% 89.06% 95.65% 88.69%
BDLSTM-CNN 86.66% 86.36% 89.84% 80.06% 84.68% 89.24% 93.75% 97.51% 88.51%

Table 6.24: Recall for major donor prediction for all charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 84.34% 88.36% 90.26% 81% 87.94% 91.12% 86.28% 95.17% 88.05%
RNN 84.29% 78.04% 83.69% 78.76% 88.15% 91.12% 83.22% 96.94% 85.42%
GRU 88.33% 90.47% 86.60% 76.65% 81.73% 91.27% 85.45% 97.03% 87.19%
BDLSTM-GRU-TDL 86.83% 93.01% 87.18% 76.95% 81.77% 90.91% 86.27% 95.66% 87.32%
BDLSTM-CNN 87.88% 75.99% 86.93% 76.20% 83.55% 90.59% 87.74% 96.69% 85.69%

Table 6.25: F1-Score for major donor prediction for all charities.

6.3.4 Summary

From this experiment, the false positives have been improved for educational
(EC-1, EC-2 and EC-3) and religious (RC-1) charities (as seen in Table 6.22)
using deep learning models. We experimented with five different ML models
for 8 charities. Based on the mean accuracy on the training set, the best per-
forming model was LSTM-GRU to predict major donors on the test data. The
confusion matrix values for LSTM-GRU model have been improved for EC-1
charity when comparing to Experiment 1 with slight decrease in accuracies
(Table 6.22). But with a cancer charity, the false positive values remain the
same (Table 6.21) as of Experiment 1. RNN and BDLSTM-GRU-TDL model
are performing better for EC-3 and cancer charities when comparing to other
models in Experiment 1 with respect to more false positive values, but with
slight decrease in accuracies. This suggests that ML models using deep learn-
ing models are performing better with higher false positive values for most of
the charities data compared to Experiment 1. As seen in Table 6.22 for EC-4
and RC-2 charities, the accuracies overlap with including standard deviations,
the best model with more false positive values, without comprising too much
accuracy was used (GRU (False positive: 65) and RNN (False positive: 9) for
EC-4 and RC-2 charities) for predicting future major donor prospects.

Based on the analysis of each models during training, we used the best per-
forming model obtained for each charities to predict future major donors. For
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example, for cancer charity, the best performing model was BDLSTM-GRU-
TDL, we used that model to make predictions on the test data. Table 6.26
shows the final predicted major and non-major donors on the test set.

The results from this experiment suggests that, LSTM-GRUs (as seen in
Table 6.22), predicts more accurate results for more than one educational and
religious charities using deep learning models, in particular with respect to
false positives.

In further experiments, we investigate the deep learning models with only
donation data, to improve both accuracies and false positive values to predict
major donors.

Labels AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2
1 (Predicted Major donors) 9281 9137 6672 3761 1176 10986 82 754
0 (Predicted Non-Major donors) 81578 42986 98005 72394 52945 200533 64761 100705

Table 6.26: Major donors for all the charities.

79



6.4 Experiment 3: Predicting major donor

prospects using only donation data

6.4.1 Objective

In previous experiments, for predicting major donors using deep learning mod-
els, which saw an increase in false positive values but slight decrease in accura-
cies when compared to Experiment 1. This experiments objective is to input
only donation data to deep learning models and remove the behavioral data,
educational data, demographic data and giveaway features to improve the ac-
curacies for 8 charities to predict future major donors. Since, it may contain
fewer misleading data in which the model’s accuracy can be improved.

6.4.2 Data and Approach

The data we used for this experiment is the same donation data used in Sec-
tion 6.2 (Table 4.1). The donation data used in this experiment are shown in
the Section 4.1.1. In this research, we compared the performance of different
algorithms, using all the features (unpruned) in the dataset as seen in Exper-
iment 1 and 2 to pruned dataset with including only donation data. When
compared to Experiment 1, Experiment 2 for predicting major donor prospects
using deep learning models found an increase in false positive values but a mi-
nor fall in accuracies. The goal was to understand whether an algorithm (say
A) on an unpruned dataset performs better than another algorithm (say B),
will algorithm B perform better in terms of false positives and accuracies on
the pruned data or vice-versa. For this experiment, the best ML models were
built using the architectures mentioned in Section 6.3 and Section 5.3. The
input dimension for training and testing the ML models for this experiment is
provided in Subsection 5.3 and the data preparation are provided in Section 4.

6.4.3 Results and Discussion

The results shown in Tables 6.27, 6.28, 6.29, 6.30 and 6.31 using LSTMGRUs,
SimpleRNNs, GRUs, BDLSTM-GRU-TDLs and BDLSTM-CNNs respectively.

Table 6.27 shows the results values for classifying 1485 donors (which in-
cludes 719 major donors and 766 are non-major donors) as major donors or
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non-major donors. Out of 719 major donors, 649 major donors are classified
correctly with precision of 81.94% (Table 6.33) and the remaining 70 major
donors are classified as non-major donors by LSTM-GRU. Out of 766 donors
in the non-major donors category, 623 are classified as non-major donors with
recall of 90.26% (Table 6.34) and the remaining 143 are classified as major
donors. From the results produced for EC-1 charity using donation data, the
best performing model was LSTM-GRU. The test accuracy of the model for
classifying the predicted value is 85.65%±0.016, which when compared to Ex-
periment 1 (Best accuracy: 94.47%±0.127, False positive: 31, False negative:
51) and Experiment 2 (Best accuracy: 89.15%±0.058, False positive: 111,
False negative: 50) with all features, shows slight decrease in ML models ac-
curacy, but higher false positive values for EC-1 charity. From the analysis,
LSTM-GRU model is performing well with respect to higher false positive
values than false negatives when compared to Experiment 1 and 2 for EC-1
charity.

TP FP FN TN
LSTM-GRU 649 143 70 623
RNN 565 152 154 614
GRU 588 227 131 539
BDLSTM-GRU-TDL 626 144 93 622
BDLSTM-CNN 625 145 94 621

Table 6.27: Results for predicting major donor prospects using donation data
for EC-1 charity with 1485 constituents.

Table 6.28 shows the results using donation data on EC-2 data for classi-
fying 2120 donors as major donors or non-major donors. Out of 908 major
donors, 772 major donors are classified correctly with precision of 89.83%
(Table 6.33) and the remaining 136 major donors are classified as non-major
donors by BDLSTM-GRU-TDL. Conversely, out of 766 donors in the non-
major donors category, 1055 are classified as non-major donors with recall of
85.75% (Table 6.34) and the remaining 157 are classified as major donors, as
these are the constituents we are looking for, who might give a major gift
which the model predicted positive. As per the results from Table 6.32 for
charity EC-2, the best performing model using donation data was BDLSTM-
GRU-TDL. The test accuracy of the model for classifying the predicted value
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is 86.17%±0.023, which when compared to Experiment 1 (Best accuracy:
91.83%±0.045, False positive: 87, False negative: 86) and Experiment 2 (Accu-
racy: 81.98%±0.027, False positive: 238, False negative: 144) with all features,
shows slight decrease in ML models accuracy than Experiment 1, but higher
false positive values, where as increase in accuracy, but lower false positives
than Experiment 2 for EC-1 charity. From the analysis, LSTM-GRU model
from Experiment 2 is performing well with respect to higher false positive
values when compared to Experiment 1 and 3 for EC-2 charity.

TP FP FN TN
LSTM-GRU 822 216 86 996
RNN 716 264 192 948
GRU 649 150 259 1062
BDLSTM-GRU-TDL 772 157 136 1055
BDLSTM-CNN 817 216 91 996

Table 6.28: Results for predicting major donor prospects using donation data
for EC-2 charity with 2120 constituents.

The results on EC-3 charity for classifying 374 donors as major donors
or non-major donors is shown in Table 6.29. Out of 222 major donors, 146
major donors are classified correctly with precision of 83.47% (Table 6.33) ,
while the other 76 major donors are classified as non-major donors by GRU. In
the non-major donors category, 104 donors are classified as non-major donors
with recall of 75.25% (Table 6.34), while the remaining 48 are classified as
major donors. The test accuracy of the model for classifying the predicted
value is 66.84%±1.110, which when compared to Experiment 1 (Best accu-
racy: 96.79%±0.020, False positive: 3, False negative: 9) and Experiment 2
(Best accuracy: 85.56%±0.016, False positive: 33, False negative: 21) with
all features, shows decrease in ML models accuracy than Experiment 1 and
2, but higher false positive values for EC-3 charity. From the analysis, there
is an overlap between accuracies (as seen in Table 6.32) between RNN, GRU,
BDLSTM-GRU-TDL and BDLSTM-CNN with including standard deviations,
in which RNN model is performing well when compared to other deep learning
models with respect to more false positives than false negatives, but decrease
in accuracies when compared to Experiment 1 and 2 for EC-3 charity.
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TP FP FN TN
LSTM-GRU 135 44 87 108
RNN 166 73 56 79
GRU 146 48 76 104
BDLSTM-GRU-TDL 160 67 62 85
BDLSTM-CNN 141 44 81 108

Table 6.29: Results for predicting major donor prospects using donation data
for EC-3 charity with 374 constituents.

The RC-1 charity results for classifying 1114 donors as major or non-major
donors is shown in Table 6.30. Out of 512 major donors, 481 major donors
are classified correctly with precision of 93.76% (Table 6.33), while the other
31 major donors were classified as non-major donors by BDLSTM-CNN. In
the non-major donors category, 570 donors are classified as non-major donors
with recall of 93.94% (Table 6.34), and the remaining 32 are the donors
we are looking for who could give major gifts, that the model actively pre-
dicted positive. The test accuracy of the model for classifying the predicted
value is 94.34%±0.019, which when compared to Experiment 1 (Accuracy:
93.35%±0.264, False positive: 42, False negative: 32) and Experiment 2 (Accu-
racy: 92.19%±0.012, False positive: 110, False negative:40 ) with all features,
shows increase in ML models accuracy than Experiment 1 and 2, but lower
false positive values for RC-1 charity. Also there is an overlap between accu-
racies (as seen in Table 6.32) between LSTM-GRU and BDLSTM-CNN with
including standard deviations, in which BDLSTM-CNN model is performing
well when compared to LSTM-GRUs with respect to more false positives than
false negatives. From the analysis, LSTM-GRU model from Experiment 2 is
performing well with respect to higher false positive values when compared to
Experiment 1 and 3 for RC-1 charity.
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TP FP FN TN
LSTM-GRU 479 31 33 571
RNN 436 43 76 559
GRU 475 126 37 476
BDLSTM-GRU-TDL 462 36 50 566
BDLSTM-CNN 481 32 31 570

Table 6.30: Results for predicting major donor prospects using donation data
for RC-1 charity with 1114 constituents.

Table 6.31 shows the results for a cancer charity for classifying 51 donors
as major or non-major donors. Out of 22 major donors, 16 major donors are
classified correctly with precision of 69.56% (Table 6.33), while the remaining
6 major donors were classified as non-major donors by BDLSTM-CNN. In
the non-major donors category, 22 donors are classified as non-major donors
with recall of 72.72% (Table 6.34), and the remaining 7 are the donors we
are looking for who could give major gifts, which the model actively pre-
dicted positive. The test accuracy of the model for classifying the predicted
value is 74.50%±0.009, which when compared to Experiment 1 (Best accuracy:
96.07%±0.170, False positive: 1, False negative: 1) and Experiment 2 (Best
accuracy: 94.11%±0.017, False positive: 1, False negative: 2) with all features,
shows decrease in ML models accuracy than Experiment 1 and 2, but higher
false positive values for a cancer charity. From the analysis, BDLSTM-CNN
model is performing well with respect to higher false positive values when
compared to Experiment 1 and 2 for a cancer charity.

TP FP FN TN
LSTM-GRU 15 8 7 21
RNN 13 11 9 18
GRU 14 19 8 10
BDLSTM-GRU-TDL 15 8 7 21
BDLSTM-CNN 16 7 6 22

Table 6.31: Results for predicting major donor prospects using donation data
for a cancer charity with 51 constituents.
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Models LSTM-GRU RNN GRU BDLSTM-GRU-TDL BDLSTM-CNN
AlzC 88.33%±0.031 78.33%±0.031 82.50%±0.028 85.83%±0.042 86.66%±0.040
CC 70.58%±0.015 60.78%±0.011 47.05%±0.028 70.58%±0.018 74.50%±0.009
EC-1 85.65%±0.016 79.39%±0.016 54.88%±0.003 84.04%±0.020 83.90%±0.029
EC-2 85.75%±0.008 78.49%±0.006 80.70%±0.004 86.17%±0.023 85.51%±0.015
EC-3 64.97%±0.007 65.50%±0.001 66.84%±1.110 65.50%±0.012 66.57%±0.005
EC-4 93.99%±0.016 84.52%±0.018 79.22%±0.003 89.90%±0.024 92.07%±0.016
RC-1 94.25%±0.017 89.31%±0.011 85.36%±0.010 92.28%±0.021 94.34%±0.019
RC-2 83.57%±0.041 81.32%±0.026 74.30%±0.004 80.92%±0.031 80%±0.030
Mean 83.38%±0.018 77.20%±0.015 71.35%±0.148 81.90%±0.023 82.94%±0.020

Table 6.32: Accuracies for major donor prediction using donation data for all
charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 94.84% 65.21% 81.94% 89.49% 85.85% 95.69% 93.92% 85.06% 86.50%
RNN 81.74% 54.16% 78.80% 83.09% 62.83% 89.67% 91.02% 83.81% 78.14%
GRU 86.38% 42.42% 72.14% 88.84% 83.47% 77.94% 79.03% 70.29% 75.06%
BDLSTM-GRU-TDL 92.47% 65.21% 81.29% 89.83% 85.84% 94.71% 92.77% 81.62% 85.46%
BDLSTM-CNN 94.54% 69.56% 81.16% 89.53% 85.84% 92.51% 93.76% 79.52% 85.80%

Table 6.33: Precision for major donor prediction using donation data for all
charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 81.66% 68.18% 90.26% 79.19% 75.41% 92.07% 93.55% 79.43% 82.46%
RNN 75% 59.09% 78.58% 73.06% 69.45% 78.10% 85.15% 75.77% 74.27%
GRU 81.65% 63.63% 81.78% 81.22% 75.25% 81.25% 92.77% 78.59% 79.51%
BDLSTM-GRU-TDL 78.33% 68.18% 83.10% 85.75% 70.48% 84.39% 90.23% 77.18% 79.70%
BDLSTM-CNN 78.33% 72.72% 86.92% 79.09% 76.21% 91.43% 93.94% 77.74% 82.04%

Table 6.34: Recall for major donor prediction using donation data for all
charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 87.20% 66.66% 85.89% 84.02% 80.29% 93.82% 93.73% 82.08% 84.21%
RNN 77.65% 56.51% 78.68% 77.75% 65.97% 83.21% 87.98% 79.27% 75.87%
GRU 81.65% 50.90% 76.65% 84.85% 79.14% 79.50% 85.35% 74.20% 76.53%
BDLSTM-GRU-TDL 84.35% 66.66% 82.18% 87.74% 77.90% 89.22% 91.48% 79.25% 82.34%
BDLSTM-CNN 85.09% 71.10% 83.94% 83.98% 80.73% 91.95% 93.84% 78.56% 83.64%

Table 6.35: F1-Score for major donor prediction using donation data for all
charities.
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6.4.4 Summary

From this experiment, the false positive values have been improved for educa-
tional charities (EC-1, EC-2 and EC-3) and a cancer charity, but there was a
slight decrease in accuracies (as seen in Table 6.32) when compared to Exper-
iment 1 and 2 including all the features. We experimented with five different
ML models for 8 charities. Based on the mean accuracy on the training set, the
best performing model was LSTM-GRU to predict major donors on the test
data. The results from this experiment suggests that, LSTM-GRUs (as seen
in Table 6.32), predicts with more false positives than false negative values for
educational charities (EC-1, EC-2 and EC-3) and a cancer charity using only
donation data. RNN and GRU, predicts with more false positives for educa-
tional charities (EC-1, EC-2 and EC-3), religious (RC-1) and a cancer charity
than other models, but with less accuracy as seen in Table 6.32. Based on the
analysis of each models during training, we used the best performing model
obtained for each charities using donation data to predict future major donors.
For example, for RC-1 charity, the best performing model was BDLSTM-CNN,
we used that model to make predictions on the test data. Table 6.36 shows
the final predicted major and non-major donors on the test set.

In further experiments, we evaluate the deep learning models using only
donation and behavioural data, to increase both accuracies and false positive
values to predict major donors.

Labels AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2
1 (Predicted Major donors) 2013 1605 2670 1495 1572 8786 1210 6796
0 (Predicted Non-Major donors) 88846 50518 102007 74660 52549 202733 63633 94663

Table 6.36: Major donors for all the charities using donation data.
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6.5 Experiment 4: Predicting major donor

prospects using only donation and be-

havioural data

6.5.1 Objective

Experiment 2 for predicting major donors using deep learning models saw an
increase in false positive values but a slight drop in accuracies for educational
(EC-1, EC-2 and EC-3) and a religious (RC-1) charities, where as in Experi-
ment 3 using only donation data BDLSTM-GRU-TDLs and BDLSTMCNNs
saw slight increase in accuracies and LSTM-GRUs predicted more false posi-
tives than false negatives when compared to Experiment 2. This experiments
objective is to input only donation and behavioral data to deep learning mod-
els and remove educational data, demographic data and giveaway features to
improve both accuracies and false positives for 8 charities to predict future
major donors.

6.5.2 Data and Approach

The data we used for this experiment is the same donation and behavioural
data used in Section 6.2 (Table 4.1). The donation and behavioural data used
in this experiment are shown in the Section 4.1.1.

Donation data provides past donation history about each constituent and
behavioural data provides if a constituent attends events, volunteers, opens
charity emails, or watches charity videos. Using this, computers can learn
how much affinity a constituent has for a charity which allows us to deter-
mine whether the ML models performance improves when only donation and
behavioural data are included.

Further the best ML models were built using the architectures mentioned
in Section 6.2 and Section 5.3. The input dimension for training and testing
the ML models for this experiment is provided in Subsection 5.3 and the data
preparation are provided in Section 4.
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6.5.3 Results and Discussion

Table 6.37 shows the results for classifying 1485 donors (which includes 719
major donors and 766 are non-major donors) as major donors or non-major
donors. Out of 719 major donors, 568 major donors are classified correctly
with precision of 82.67% (Table 6.43) and the remaining 151 major donors
are classified as non-major donors by LSTM-GRU. Out of 766 donors in the
non-major donors category, 647 are classified as non-major donors with recall
of 78.99% (Table 6.44) and the remaining 119 are classified as major donors.
From the results produced for EC-1 charity using donation and behavioural
data, the best performing model was LSTM-GRU. The test accuracy of the
model for classifying the predicted value is 81.81%±0.112, which when com-
pared to Experiment 1 (Best accuracy: 94.47%±0.127, False positive: 31, False
negative: 51), Experiment 2 (Best accuracy: 89.15%±0.058, False positive:
111, False negative: 50) with all features and Experiment 3 (Best accuracy:
85.65%±0.016, False positive: 143, False negative: 70) with only donation
data, shows slight decrease in ML models accuracy, but higher false positive
values than Experiment 1 and 2 for EC-1 charity. From the analysis, LSTM-
GRU model is performing well with respect to higher false positive values when
compared to Experiment 1 and 2 for EC-1 charity.

TP FP FN TN
LSTM-GRU 568 119 151 647
RNN 586 205 133 561
GRU 580 167 139 599
BDLSTM-GRU-TDL 586 176 133 590
BDLSTM-CNN 594 178 125 588

Table 6.37: Results for predicting major donor prospects using donation and be-
havioural data for EC-1 charity with 1485 constituents.

Table 6.38 shows the results using donation and behavioural data on EC-2
data for classifying 2120 donors as major donors or non-major donors. Out
of 908 major donors, 740 major donors are classified correctly with precision
of 74.59% (Table 6.43) and the remaining 168 major donors are classified as
non-major donors. Conversely, out of 1212 donors in the non-major donors
category, 960 are classified as non-major donors with recall of 49.07% (Ta-
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ble 6.44) and the remaining 252 are classified as major donors, as these are
the constituents we are looking for, who might give a major gift which the
model predicted positive. As per the results from Table 6.42 for charity EC-2,
the best performing model using donation data was LSTM-GRU. The test ac-
curacy of the model for classifying the predicted value is 80.18%±0.133, which
when compared to Experiment 1 (Best accuracy: 91.83%±0.045, False pos-
itive: 87, False negative: 86), Experiment 2 (Best accuracy: 81.98%±0.027,
False positive: 238, False negative: 144) with all features and Experiment 3
(Best accuracy: 86.17%±0.023, False positive: 157, False negative: 136) with
only donation data, shows slight decrease in ML models accuracy, but higher
false positive values than Experiment 1, 2 and 3 for EC-1 charity. From the
analysis, LSTM-GRU model is performing well with respect to higher false
positive values than false negatives when compared to Experiment 1, 2 and 3
for EC-2 charity.

TP FP FN TN
LSTM-GRU 740 252 168 960
RNN 686 285 222 927
GRU 699 258 209 954
BDLSTM-GRU-TDL 754 313 154 899
BDLSTM-CNN 759 298 149 914

Table 6.38: Results for predicting major donor prospects using donation and be-
havioural data for EC-2 charity with 2120 constituents.

The results on EC-3 charity for classifying 374 donors as major donors or
non-major donors is shown in Table 6.39. Out of 222 major donors, 154 major
donors are classified correctly with precision of 75.86% (Table 6.43), while the
other 68 major donors are classified as non-major donors by BDLSTM-GRU-
TDL. In the non-major donors category, 103 donors are classified as non-major
donors with recall of 69.36% (Table 6.44), while the remaining 49 are classi-
fied as major donors. The best performing model using donation data for
charity EC-3 was BDLSTM-GRU-TDL (as seen in Table 6.42). The model’s
test accuracy in classifying the predicted value is 68.71%±0.097, which when
compared to Experiment 1 (Best accuracy: 96.79%±0.020, False positive: 3,
False negative: 9), Experiment 2 (Best accuracy: 85.56%±0.016, False posi-
tive: 33, False negative: 21) with all features and Experiment 3 (Accuracy:
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66.84%±1.110, False positive: 48, False negative: 76) with only donation data,
shows decrease in ML models accuracy than Experiment 1 and 2, but higher
false positive values when compared to Experiment 1, 2 and 3 for EC-3 char-
ity. From the analysis, BDLSTM-GRU-TDL model is performing well with
respect to higher false positive values when compared to Experiment 1, 2 and
3 for EC-3 charity.

TP FP FN TN
LSTM-GRU 119 43 103 109
RNN 147 74 75 78
GRU 130 55 92 97
BDLSTM-GRU-TDL 154 49 68 103
BDLSTM-CNN 122 24 100 128

Table 6.39: Results for predicting major donor prospects using donation and be-
havioural data for EC-3 charity with 374 constituents.

The RC-1 charity results for classifying 1114 donors as major or non-major
donors is shown in Table 6.40. Out of 512 major donors, 487 major donors are
classified correctly with precision of 85.28% (Table 6.43), while the other 25
major donors were classified as non-major donors by RNN. In the non-major
donors category, 518 donors are classified as non-major donors with recall
of 95.11% (Table 6.44), and the remaining 84 are the donors we are looking
for who could give major gifts, that the model actively predicted positive.
The best performing model using donation data for charity RC-1 was RNN
(as seen in Table 6.42). The test accuracy of the model when classifying the
predicted value is 90.21%±0.034, which when compared to Experiment 1 (Best
accuracy: 93.35%±0.264, False positive: 42, False negative: 32), Experiment
2 (Best accuracy: 92.19%±0.012, False positive: 110, False negative: 40) with
all features and Experiment 3 (Best accuracy: 94.34%±0.019, False positive:
32, False negative: 31) with only donation data, shows slight decrease in ML
models accuracy, but higher false positive values than Experiment 1 and 3 for
RC-1 charity. From the analysis, LSTM-GRU model from Experiment 2 is
performing well with respect to higher false positive values when compared to
Experiment 1, 3 and 4 for RC-1 charity.
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TP FP FN TN
LSTM-GRU 499 104 13 498
RNN 487 84 25 518
GRU 492 120 20 482
BDLSTM-GRU-TDL 476 102 36 500
BDLSTM-CNN 495 132 17 470

Table 6.40: Results for predicting major donor prospects using donation and be-
havioural data for RC-1 charity with 1114 constituents.

Table 6.41 shows the results for a cancer charity for classifying 51 donors
as major or non-major donors. Out of 20 major donors, 13 major donors are
classified correctly with precision of 61.90% (Table 6.43), while the remain-
ing 9 major donors were classified as non-major donors by LSTM-GRU. In
the non-major donors category, 21 donors are classified as non-major donors
with recall of 59.09% (Table 6.44), and the remaining 8 are the donors we
are looking for who could give major gifts, which the model actively predicted
positive. The best performing model using donation data for a cancer char-
ity was LSTM-GRU (as seen in Table 6.42). The test accuracy of the model
when classifying the predicted value is 81.39%±0.112, which when compared
to Experiment 1 (Best accuracy: 96.07%±0.170, False positive: 1, False nega-
tive: 1), Experiment 2 (Best accuracy: 94.11%±0.017, False positive: 1, False
negative: 2) with all features and Experiment 3 (Accuracy: 74.50%±0.009,
False positive: 7, False negative: 6) with only donation data, shows decrease
in ML models accuracy than Experiment 1 and 2, but higher false positive
values than Experiment 1, 2 and 3 for a cancer charity. From the analysis,
LSTM-GRU model is performing well with respect to higher false positive
values when compared to Experiment 1, 2 and 3 for a cancer charity.
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TP FP FN TN
LSTM-GRU 13 8 9 21
RNN 15 6 7 23
GRU 10 9 12 20
BDLSTM-GRU-TDL 16 10 6 19
BDLSTM-CNN 14 7 8 22

Table 6.41: Results for predicting major donor prospects using donation and
behavioural data for a cancer charity with 51 constituents.

Models LSTM-GRU RNN GRU BDLSTM-GRU-TDL BDLSTM-CNN
AlzC 87.50%±0.029 82.33%±0.038 82.23%±0.031 83.33%±0.034 88.42%±0.003
CC 81.39%±0.135 74.50%±0.020 58.82%±0.190 68.62%±0.215 70.58%±0.011
EC-1 81.81%±0.112 77.23%±0.096 79.39%±0.111 79.19%±0.104 79.59%±0.107
EC-2 80.18%±0.133 76.08%±0.077 77.97%±0.081 77.91%±0.080 78.91%±0.092
EC-3 60.96%±0.056 60.16%±0.053 61.69%±0.065 68.71%±0.097 66.84%±0.088
EC-4 86.67%±0.017 85.31%±0.013 88.02%±0.027 87.65%±0.021 84.46%±0.017
RC-1 89.49%±0.029 90.21%±0.034 87.43%±0.019 87.61%±0.020 86.62%±0.019
RC-2 83.33%±0.033 77.56%±0.002 76.28%±0.005 86.53%±0.022 82.05%±0.039
Mean 81.41%±0.068 77.92%±0.041 76.47%±0.066 79.94%±0.074 79.68%±0.047

Table 6.42: Accuracies for major donor prediction using donation and be-
havioural data for all charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 86.23% 61.90% 82.67% 74.59% 73.45% 83.70% 82.75% 78.65% 77.99%
RNN 97.23% 71.42% 74.08% 70.64% 66.51% 83.47% 85.28% 76.92% 78.19%
GRU 86% 52.63% 77.64% 73.04% 70.27% 84.77% 80.39% 79.41% 75.51%
BDLSTM-GRU-TDL 88.11% 61.53% 76.90% 70.66% 75.86% 84.96% 82.35% 84.14% 78.06%
BDLSTM-CNN 82.12% 66.66% 76.94% 71.80% 83.56% 80.85% 78.94% 85.50% 78.29%

Table 6.43: Precision for major donor prediction using donation and be-
havioural data for all charities.
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Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 76.92% 59.09% 78.99% 49.07% 53.60% 90.71% 97.46% 90.90% 74.59%
RNN 69.23% 68.18% 81.50% 75.55% 66.21% 87.67% 95.11% 77.92% 77.67%
GRU 67.03% 45.45% 80.66% 76.98% 58.55% 92.38% 96.09% 70.12% 73.40%
BDLSTM-GRU-TDL 66.66% 72.72% 81.50% 83.03% 69.36% 91.17% 92.96% 89.61% 85.33%
BDLSTM-CNN 80.55% 63.65% 82.61% 83.59% 54.95% 92.54% 96.67% 76.62% 78.89%

Table 6.44: Recall for major donor prediction using donation and behavioural
data for all charities.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2 Mean
LSTM-GRU 81.30% 60.46% 80.78% 59.19% 61.97% 87.07% 89.50% 84.33% 75.57%
RNN 81.23% 69.76% 77.61% 73.01% 66.35% 85.52% 89.92% 77.41% 77.60%
GRU 81.81% 48.77% 79.12% 74.95% 63.87% 88.41% 87.54% 74.48% 80.80%
BDLSTM-GRU-TDL 80% 66.65% 79.13% 76.34% 72.45% 87.95% 87.33% 86.79% 79.58%
BDLSTM-CNN 81.32% 65.12% 79.67% 77.24% 66.30% 86.30% 86.90% 80.82% 77.95%

Table 6.45: F1-Score for major donor prediction using donation and be-
havioural data for all charities.

6.5.4 Summary

From this experiment, the false positives for educational charities (EC-1, EC-2
and EC-3), religious charity (RC-1) and a cancer charity has been improved,
but minor drop in accuracies (as seen in Table 6.42) when comparing Experi-
ment 1, 2 and 3 with using only donation and behavioural data for predicting
major donor prospects for charities. We experimented with five different ML
models for 8 charities. Based on the mean accuracy on the training set, the
best performing model was LSTM-GRU. RNN model is performing better for
RC-1 charity when comparing to other models in Experiment 1 and 3 with
respect to more false positive values, but with slight decrease in accuracies.
This suggests that ML models using donation and behavioural data are per-
forming better on more than one educational charities, religious and a cancer
charity data compared to Experiment 1, 2 and 3, in particular with respect
to accuracy and more false positives. Based on the analysis of each models
during training, we used the best performing model obtained for each charities
using donation and behavioural data to predict future major donors. For ex-
ample, for EC-2 charity, the best performing model was LSTM-GRU, we used
that model to make predictions on the test data. Table 6.46 shows the final
predicted major and non-major donors on the test set.
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Labels AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2
1 (Predicted Major donors) 9068 9885 9261 1446 28065 1586 11887 8192
0 (Predicted Non-Major donors) 81791 42238 95416 74709 26056 209933 52956 93267

Table 6.46: Major donors for all the charities using donation and behavioural
data.
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6.6 Experiment 5: Predicting how much money

major donor constituents will contribute

to the charity

6.6.1 Objective

Some major gifts are much larger than others, as any donor who donates
$10,000 is considered a major donor, but a donor who donates $1,000,000 is not
the same as someone who donates $10,000. The objective of this experiment
is to build a regression model for predicting how much money the major donor
constituents will contribute to the charities.

6.6.2 Data and Approach

The data we used for this experiment is from 5 charities that deal with a
religious charity and 4 educational charities (Table 4.1) with all the features
included. Initially, a regression model was built on all the five charities. We
used box-cox transformation to handle the highly skewed data 2, based on
exploratory data analysis (EDA) on the dataset in the pre-processing stage
and imported the scipy function boxcox1p which computes the box-cox trans-
formation of 1 + x:

if(λ! = 0); y =
((1 + x)λ − 1)

λ
(6.1)

if(λ == 0); y = log(1 + x) (6.2)

2Skewness refers to a distortion or asymmetry that deviates from the symmetrical bell
curve, or normal distribution, in a set of data.
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We used the below five regression models in this experiment:

• LASSO regression: The Robustscaler() technique was employed on a
scikit-learn pipeline to make the model more robust and reduce outliers.
alpha set to 0.0005 and random state = 1.

• Elastic Net regression: The Robustscaler() technique was employed on a
scikit-learn pipeline to make the model more robust, as outliers are par-
ticularly sensitive to it. The scikit-learn python machine learning library
provided an implementation for the Elastic Net penalized regression al-
gorithm via the ElasticNet class. The alpha hyperparameter is set via
the l1 ratio argument that controls the contribution of the L1 and L2
penalties and the lambda hyperparameter is set via the alpha argument
that controls the contribution of the sum of both penalties to the loss
function. Value of 0.9 is used for l1 ratio and 0.0005 is used for alpha.

• Gradient Boosting Regression: The parameters used for defining this
model are explained as follows: n estimators: The number of trees in
the forest. max depth = 4: The maximum depth of a tree and used to
control over-fitting, it is tuned during cross validation. min samples split
= 10: The minimum number of samples required in a node for splitting
and higher values can lead to under-fitting. learning rate = 0.05: It de-
termines the impact of each tree on the final outcome, lower values make
the model robust and thus allowing it to generalize well. max features
= sqrt: Number of features to consider while searching for a best split,
square root of the total number of features works well as higher val-
ues can lead to over-fitting. min samples leaf = 15: Minimum samples
required in a terminal node or leaf. random state = 5: The random
number seed so that same random numbers are generated every time.
Loss = huber: Refers to the loss function to be minimized in each split.
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Hyper parameters Values
n estimators estimator
max depth 4
min samples split 10
learning rate 0.05
max features sqrt
min samples leaf 15
random state 5
loss huber

Table 6.47: Gradient Boosting Regression parameters.

• XGBoost Regression: It is defined by creating an instance of the XGBRe-
gressor class. colsample bytree = 0.4603: It is similar to max features in
gradient boosting which denotes the fraction of columns to be randomly
samples for each tree and ranges from 0.5 to 1. gamma = 0.0468: A
node is split only when the resulting split gives a positive reduction in
the loss function, gamma specifies the minimum loss reduction required
to make a split. learning rate = 0.01: It determines the impact of each
tree on the final outcome, lower values make the model robust and thus
allowing it to generalize well. max depth = 5: The maximum depth of
a tree. random state = 7: The random number seed so that same ran-
dom numbers are generated every time. nthread = -1: This is used for
parallel processing and takes the number of cores in the system.

Hyper parameters Values
colsample bytree 0.4603
gamma 0.0468
learning rate 0.01
max depth 5
random state 7
nthread -1

Table 6.48: XGBoost Regression parameters.
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• LightGBM Regression: The parameters used for defining this model are
explained as follows: objective = regression: It specifies the learning task
and the corresponding learning objective. num leave = 5: Maximum tree
leaves for base learners. learning rate = 0.05: It determines the impact of
each tree on the final outcome. n estimators = 720: Number of trees to
fit. max bin = 55: Used to control over-fitting and ranges from 2 to ∞.
bagging fraction = 0.8: It randomly samples the training data without
re-sampling which ranges from 0 to 1. bagging freq = 5: 0 means disable
bagging, 5 means perform bagging at every 5 iteration. feature fraction
= 0.2319: The percentage of features selected. feature fraction seed =
9: Random seed for feature fraction. bagging seed = 9: Random seed
for bagging. min data in leaf = 6: Minimal number of data in one leaf
which is used to deal with over-fitting. min sum hessian in leaf = 11:
Minimal sum hessian in one leaf which is similar to min data in leaf.

Hyper parameters Values
objective regression
num leave 5
learning rate 0.05
n estimators 720
max bin 55
bagging fraction 0.8
bagging freq 5
feature fraction 0.2319
feature fraction seed 9
bagging seed 9
min data in leaf 6
min sum hessian in leaf 11

Table 6.49: LightGBM Regression parameters.

6.6.3 Results and Discussion

6.6.3.1 Cross Validation:

We evaluated the five base-models on the dataset using k-fold cross-validation
and reported the root mean square error (RMSE) of all the models in the given
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dataset. The function rmse cv is used to train all the individual models in the
2 folds of the data created and it returns the RMSE value for the model based
on the out of fold predictions compared with the actual predictions. Initially
we used k=5, which saw enormous standard deviations and RMSE scores (as
seen in Table 6.50 and 6.51), as we need to lower both the scores, we used k=2
on the dataset.

Regression Models RC-1 EC-1 EC-2 EC-3 EC-4
Lasso Regression $258448.63 $223652.65 $347540.59 $261499.17 $291480.58
ElasticNet Regression $472509.48 $194308.94 $366233.13 $183405.14 $118827.32
Gradient Boosting Regression $45334.53 $104758.52 $152763 $86907.56 $954214.66
XGboost Regression $46381.82 $12640.56 $20290.70 $75250.36 $80876.37
Light GBM Regression $82356.73 $102871.25 $160563.75 $69442.64 $108745.74
Average Stacking (GBM, Lasso, XGB) $95474.92 $139138.75 $209959.58 $115533.74 $102453.23
Meta GBM- Average Models (LGB, GBM, XGBOOST) $51927.97 $99384.63 $155030.92 $69602.44 $909048.92

Table 6.50: RMSE values using 5-fold for major donor amount predictions for
five charities.

Regression Models RC-1 EC-1 EC-2 EC-3 EC-4
Lasso Regression $331245.01 $87686.34 $68099.54 $68250.12 $540843.74
ElasticNet Regression $836605.63 $72744.80 $110989.59 $19765.92 $233607.43
Gradient Boosting Regression $68215.16 $90840.35 $114423.57 $47238.25 $121439.38
XGboost Regression $68863.28 $92200.07 $95428.72 $46606.04 $10086.8
Light GBM Regression $50111.75 $75215.53 $95250.82 $35895.21 $894080.75
Average Stacking (GBM, Lasso, XGB) $126886.63 $89258.97 $96129.31 $27472.01 $177722.97
Meta GBM- Average Models (LGB, GBM, XGBOOST) $65024.73 $90125.47 $107883.93 $45993.62 $1055451.43

Table 6.51: Standard deviation values using 5-fold for major donor amount
predictions for five charities.

6.6.3.2 Type 1: Simplest Stacking Regressor approach: Averaging
Base models

We begin this simple approach of averaging base models. We build a new
class to extend scikit-learn with our model and defined clones of the original
models to fit the data in, trained the cloned base models, finally, computed
the predictions for cloned models and averaged them.
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6.6.3.3 Type 2: Adding a Meta-model

In this approach, we trained all the base models and used the predictions
(out-of-fold predictions) of the base models as a training feature to the meta-
model. The meta-model is used to find the pattern between the base model
predictions as features and actual predictions as the target variables.

• Split the data into 2 sets training and test set.

• Train all the base models with the training data.

• Tested base models on the holdout dataset and stored the predictions
(out-of-fold predictions).

• Used the out-of-fold predictions made by the base models as input fea-
tures, and the correct output as the target variable to train the meta-
model.

Since, k=2 we trained the model on the 1 fold and predicted on the holdout
set (2nd fold). Repeating this step for 2 times gives the out-of-fold predictions
for the whole dataset. This is done for all the base models. Then meta-model
is trained using the out-of-predictions by all the models as X and the original
target variable as y. Prediction of this meta-model is be considered as the final
prediction.

For this experiment, we used datasets from 5 charities (Table 4.1) with all
the features included. Each charity’s lowest RMSE and Standard deviation
are highlighted. In conclusion, based on the RMSE values on the training set,
the best performing model was Light GBM Regression to predict how much
money major donor constituents will contribute to the charity on the test data.

Regression Models RC-1 EC-1 EC-2 EC-3 EC-4
Lasso Regression $51903.41 $22453.8 $19737.69 $38269.37 $22478.91
ElasticNet Regression $44771.90 $21334.6 $19711 $38130.86 $22471.19
Gradient Boosting Regression $17992.67 $4384.9 $4082.16 $10243.12 $4869.83
XGboost Regression $15692.46 $12594.5 $14214.07 $18603.49 $16541.49
Light GBM Regression $16823.69 $3329.7 $2867.26 $9940.21 $3555.06
Average Stacking (GBM, Lasso, XGB) $21598.23 $10606.03 $9456.41 $14850.59 $11070.69
Meta GBM- Average Models (LGB, GBM, XGBOOST) $15130.14 $5842.5 $5982.04 $11495.41 $7033.43

Table 6.52: RMSE values using 2-fold for major donor amount predictions for
five charities.
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Regression Models RC-1 EC-1 EC-2 EC-3 EC-4
Lasso Regression $28673.67 $1404.05 $2041.35 $6860.66 $845.03
ElasticNet Regression $23589.10 $264.76 $2018.72 $6720.18 $877.01
Gradient Boosting Regression $3582.16 $473.33 $5.09 $1626.28 $447.05
XGboost Regression $8888.82 $1532.26 $449.68 $508.90 $534.99
Light GBM Regression $3818 $556.75 $21.37 $1840.09 $206
Average Stacking (GBM, Lasso, XGB) $11665.67 $610.70 $596.89 $1801.70 $279.38
Meta GBM- Average Models (LGB, GBM, XGBOOST) $6980.59 $984.15 $308.49 $1169.17 $122.30

Table 6.53: Standard deviation values using 2-fold for major donor amount
predictions for five charities.
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Chapter 7

Conclusion and Future Work

The goal of this thesis was to accurately predict major donor prospects for
a number of different non-profit organizations and investigate which machine
learning algorithms and data types are best to make these predictions. In
addition, we predicted the amount of money that the major donor constituents
will contribute to the charity. Real-world major donor and non-major donor
data is utilized to train and test the machine learning models, which are then
interrogated to determine the major donors to the charity.

7.1 Contributions

Our research shows that machine learning, that we have effectively developed
in terms of specific metrics, will accurately predict future major donors. Ma-
chine learning models used to model the major donor data in this research
are LSTMGRUs, SimpleRNNs, GRUs, BDLSTM-GRU-TDLs, BDLSTMC-
NNs, random forest classifier, Adaboost, gradient boosting, extra trees classi-
fier, gaussian naive bayes, decision tree, logistic regression, LASSO regression,
elastic net, Light GBM and XGBoost. The data types used in our research
are: demographic, donation, behavioural and educational data.

In Experiment 1, we experimented with six different ML models for 8 char-
ities in order to accurately predict future major donor prospects. For the ML
models used in this research, we are looking for bigger false positive values
than false negatives, which indicates who might give a major gift. Based on
the mean accuracy and confusion matrices values on the training set, the best
performing model was random forest classifier (as seen in Table 6.7) to predict
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major donors on the test data. However, the false positive values for educa-
tional charities (EC-1 (Table 6.2) and EC-3 (Table 6.4)) and a cancer charity
(Table 6.6) are less than false negative values and needed to be increased.
Gaussian Naive Bayes, predicts with more false positives for educational char-
ities (EC-1, EC-2 and EC-3), religious (RC-1) and a cancer charity than other
models, but with less accuracy as seen in Table 6.7.

In Experiment 2, the false positives have been improved for educational
(EC-1, EC-2 and EC-3) and religious (RC-1) charities (as seen in Table 6.22)
using deep learning models. Based on the mean accuracy on the training
set, the best performing model was LSTM-GRU to predict major donors on
the test data. The confusion matrix values for LSTM-GRU model have been
improved for EC-1 charity when comparing to Experiment 1 with slight de-
crease in accuracies (Table 6.22). But with a cancer charity, the false positive
values remain the same (Table 6.21) as of Experiment 1. RNN and BDLSTM-
GRU-TDL model are performing better for EC-3 and cancer charities when
comparing to other models in Experiment 1 with respect to more false positive
values, but with slight decrease in accuracies. This suggests that ML models
using deep learning models are performing better with higher false positive
values on most of the charities data compared to Experiment 1.

In Experiment 3, the false positive values have been improved for educa-
tional charities (EC-1, EC-2 and EC-3) and a cancer charity, but there was
a slight decrease in accuracies (as seen in Table 6.32) when compared to Ex-
periment 1 and 2 including all the features. Based on the mean accuracy on
the training set, the best performing model was LSTM-GRU to predict ma-
jor donors on the test data. The results from this experiment suggests that,
LSTM-GRUs (as seen in Table 6.32), predicts with more false positives than
false negative values for educational charities (EC-1, EC-2 and EC-3) and a
cancer charity using only donation data. RNN and GRU, predicts with more
false positives for educational charities (EC-1, EC-2 and EC-3), religious (RC-
1) and a cancer charity than other models, but with less accuracy as seen in
Table 6.32.

In Experiment 4, the false positives for educational charities (EC-1, EC-2
and EC-3), religious charity (RC-1) and a cancer charity has been improved,
but minor drop in accuracies (as seen in Table 6.42) when comparing Experi-
ment 1, 2 and 3 with using only donation and behavioural data for predicting
major donor prospects for charities. Based on the mean accuracy on the train-
ing set, the best performing model was LSTM-GRU. RNN model is performing
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better for RC-1 charity when comparing to other models in Experiment 1 and
3 with respect to more false positive values, but with slight decrease in accu-
racies. This suggests that ML models using donation and behavioural data
are performing better on more than one educational charities, religious and
a cancer charity data compared to Experiment 1, 2 and 3, in particular with
respect to accuracy and more false positives.

Of all these, including all the features turned out to be the better model
with more accurate results when predicting future major donors as seen in
Experiment 1 and 2. Among the deep learning models developed and from
the results on Section 6.3, the best performing model chosen for all the char-
ities was LSTM-GRU to predict major donors on the test data as shown in
Table 6.22 with mean accuracy of 88.64%±0.030. Where as, using supervised
learning models for predicting major donors, random forest classifier is per-
forming better compared to other models for all charities with mean accuracy
of 90.85%±0.089, but with fewer false positives when compared to Experiment
3 and 4.

Table 7.1 summarizes the best ML model for each charity in terms of best
accuracy, false positive values and type of data used (with all the features,
with only donation data and with donation and behavioural data).

Using the analysis from Section 6.2, 6.3, 6.4 and 6.5, we predicted on how
much money the major donor constituents will contribute to the charity as
mentioned in Section 6.6.

Models AlzC CC EC-1 EC-2 EC-3 EC-4 RC-1 RC-2

Accuracy (All features) 89.74%±0.032 92.15%±0.017 88.88%±0.058 79.38%±0.027 85.56%±0.016 91%±0.008 92.19%±0.012 96.94%±0.016

False positives 2 1 111 238 33 50 110 3

ML Model Used BCNN BGRU-TDL LSTM-GRU LSTM-GRU RNN GRU LSTM-GRU GRU

Accuracy (using SL) 92.85%±0.046% 96.07%±0.170 94.47%±0.127 91.83%±0.045 96.79%±0.020 90.44%±0.159 93.35%±0.264 96.77%±0.014

False Positives 1 1 31 87 3 29 42 1

ML Model Used RF LR RF AB DT RF LR RF

Accuracy (only donation data) 88.33%±0.031 74.50%±0.009 85.65%±0.016 86.17%±0.023 66.84%±1.110 93.99%±0.016 94.34%±0.019 83.57%±0.041

False Positives 1 7 143 157 48 123 32 10

ML Model Used LSTM-GRU BCNN LSTM-GRU BGRU-TDL GRU LSTM-GRU BCNN LSTM-GRU

Accuracy (only donation and behavioural data) 88.42%±0.003 81.39%±0.135 81.81%±0.112 80.18%±0.133 68.71%±0.097 88.02%±0.027 90.21%±0.034 86.53%±0.022

False Positives 1 8 119 252 49 116 84 10

ML Model Used BCNN LSTM-GRU LSTM-GRU LSTM-GRU BGRU-TDL GRU RNN BGRU-TDL

Table 7.1: Summary of best ML model based on experiments performed in this re-
search (SL: Supervised Learning, BCNN: BDLSTM-CNN, BGRU-TDL: BDLSTM-
GRU-TDL, RF: Random Forest, LR: Logistic Regression, AB: Adaboost, DT: De-
cision Tree).

The following is a summary of the findings from this research:
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1. Built various supervised learning models with all the features that pre-
dicted future major donors for eight charities. Based on the mean accu-
racy and confusion matrices values on the training set, the best perform-
ing model was random forest classifier (as seen in Table 6.7) to predict
major donors on the test data.

2. Generated deep learning models that predicted future major donor
prospects for eight different charities with all the features included.
Based on the mean accuracy on the training set, the best performing
model was LSTM-GRU to predict major donors on the test data. The
false positives have been improved for educational (EC-1, EC-2 and EC-
3) and religious (RC-1) charities (as seen in Table 6.22) using deep learn-
ing models. But with a cancer charity, the false positive values remain
the same (Table 6.21) as of Experiment 1. RNN and BDLSTM-GRU-
TDL model are performing better for EC-3 and cancer charities when
comparing to other models in Experiment 1 with respect to more false
positive values, but with slight decrease in accuracies. This suggests
that ML models using deep learning models are performing better with
higher false positive values on most of the charities data compared to
Experiment 1.

3. Built ML models with only donation data: The false positive values
have been improved for educational charities (EC-1, EC-2 and EC-3)
and a cancer charity, but there was a slight decrease in accuracies (as
seen in Table 6.32) when compared to Experiment 1 and 2 including
all the features. Based on the mean accuracy on the training set, the
best performing model was LSTM-GRU to predict major donors on the
test data. The results from this experiment suggests that, LSTM-GRUs
(as seen in Table 6.32), predicts with more false positives than false
negative values for educational charities (EC-1, EC-2 and EC-3) and a
cancer charity using only donation data. RNN and GRU, predicts with
more false positives for educational charities (EC-1, EC-2 and EC-3),
religious (RC-1) and a cancer charity than other models, but with less
accuracy as seen in Table 6.32.

4. Built ML models with only donation and behavioural data: The false
positives for educational charities (EC-1, EC-2 and EC-3), religious char-
ity (RC-1) and a cancer charity has been improved, but with minor drop
in accuracies (as seen in Table 6.42) when comparing Experiment 1, 2
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and 3 with using only donation and behavioural data for predicting ma-
jor donor prospects for charities. Based on the mean accuracy on the
training set, the best performing model was LSTM-GRU. RNN model
is performing better for RC-1 charity when comparing to other models
in Experiment 1 and 3 with respect to more false positive values, but
with slight decrease in accuracies. This suggests that ML models using
donation and behavioural data are performing better on more than one
educational charities, religious and a cancer charity data compared to
Experiment 1, 2 and 3, in particular with respect to accuracy and more
false positives.

5. Built a regression model for predicting how much money major donor
constituents will contribute to the charity. Based on the lowest RMSE
and standard deviation scores (as seen in Table 6.52) on the training set,
the best performing model chosen was Light GBM Regression to predict
how much money major donor constituents will contribute to the charity
on the test data.

We propose that this research can be applied in predicting the future major
donor prospects for various charities.

7.2 Understanding the Behaviour of the Mod-

els

1. Based on the performance matrices from Section 6.2, 6.3, 6.4 and 6.5,
the ML models such as LSTM-GRU, BDLSTM-GRU-TDL, BDLSTM-
CNN and random forest classifier can be used in predicting future major
donors for a charity. Based on the analysis listed in the contributions
Section 7.1, below models and data set shown in Table 7.2 can be used
to create the list of potential major donors for the charities.

2. Data with only donation features improved the false positives with slight
decrease in accuracies for educational charities (EC-1, EC-2 and EC-3)
and a cancer charity for an LSTM-GRU model.

3. Using only donation and behavioural data, the false positives for educa-
tional charities (EC-1, EC-2 and EC-3), religious (RC-1) and a cancer
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Models Data set ML Model

AlzC All features dataset BDLSTM-CNN

CC Only donation and behavioural data LSTM-GRU

EC-1 All features dataset LSTM-GRU

EC-2 Only donation and behavioural data LSTM-GRU

EC-3 All features dataset RNN

EC-4 Only donation data LSTM-GRU

RC-1 Only donation data BDLSTM-CNN

RC-2 Only donation and behavioural data BDLSTM-GRU-TDL

Table 7.2: ML models which can be used by charities for creating major donor
prospects list.

charity has been improved, but with minor drop in accuracies (as seen
in Table 6.42) when comparing to Experiment 1, 2 and 3.

4. A charity could choose the random forest model if they seek high accu-
racy with fewer false positives.

5. If a charity with a low accuracy model but get more false positives then
they can choose LSTM-GRU model.

6. If a charity wants in between point (4) and (5), they can use only dona-
tion and behavioural data.

7. Light GBM Regression model with lowest RMSE values and standard
deviations (as seen in Table 6.52) in Section 6.6 can be used to pre-
dict how much amount major donor constituents will contribute to the
charity.

7.3 Future Work

The current research can be advanced by taking the following steps:
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1. Using wealth indicators which are publicly available data points about
donors that provide insights into their income and wealth status. Wealth
screening technology can seek out these records and compile important
information for the organization. Wealth indicators can tell which of the
prospects is financially capable of making a major gift and the likely size
of that gift.

2. In the future, it will be interesting to explore other models such as uni-
variate chi-square methods for features selection. SMOTE upsampling
method that perturbs some of the features during upsampling could be
implemented and compared with the current results.

3. Deep ANNs could be used to develop a regression model for predicting
how much money major donor constituents would contribute to a charity
in the future.
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